## Long chains of nearly doubled primes

HTML articles powered by AMS MathViewer

- by Günter Löh PDF
- Math. Comp.
**53**(1989), 751-759 Request permission

## Abstract:

A chain of nearly doubled primes is an ordered set $\{ {a_1},{a_2}, \ldots ,{a_\lambda }\}$ of prime numbers, interlinked by ${a_k} = 2{a_{k - 1}} \pm 1$. A search for long chains of this kind has been performed in the range ${a_1} < {2^{50}}$. Chains of length up to 13 have been found. Shorter chains have been counted in some restricted ranges. Some of these counts are compared with the frequencies predicted by a quantitative version of the prime*k*-tuples conjecture.

## References

- Paul T. Bateman and Roger A. Horn,
*A heuristic asymptotic formula concerning the distribution of prime numbers*, Math. Comp.**16**(1962), 363–367. MR**148632**, DOI 10.1090/S0025-5718-1962-0148632-7
Allan Cunningham, "On hyper-even numbers and on Fermat’s numbers," - Richard K. Guy,
*Unsolved problems in number theory*, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR**656313** - G. H. Hardy and J. E. Littlewood,
*Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1923), no. 1, 1–70. MR**1555183**, DOI 10.1007/BF02403921
Claude Lalout & Jean Meeus, "Nearly-doubled primes," - D. H. Lehmer,
*On certain chains of primes*, Proc. London Math. Soc. (3)**14a**(1965), 183–186. MR**177964**, DOI 10.1112/plms/s3-14A.1.183 - Daniel Gallin, R. P. Nederpelt, R. B. Eggleton, John H. Loxton, A. Oppenheim, M. J. Pelling, Paul Erdos, and Jeffrey L. Rackusin,
*Problems and Solutions: Elementary Problems: E2647-E2652*, Amer. Math. Monthly**84**(1977), no. 4, 294–295. MR**1538330**, DOI 10.2307/2318876 - Paulo Ribenboim,
*13 lectures on Fermat’s last theorem*, Springer-Verlag, New York-Heidelberg, 1979. MR**551363**, DOI 10.1007/978-1-4684-9342-9 - Hans Riesel,
*Prime numbers and computer methods for factorization*, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**897531**, DOI 10.1007/978-1-4757-1089-2
A. Schinzel & W. Sierpiński, "Sur certaines hypothèses concernant les nombres premiers," - Samuel Yates,
*Repunits and repetends*, Samuel Yates, Delray Beach, Fla., 1982. With a foreword by D. H. Lehmer. MR**667020**

*Proc. London Math. Soc. (2)*, v. 5, 1907, pp. 237-274.

*J. Recreational Math.*, v. 13, 1980-81, pp. 30-35.

*Acta Arith.*, v. 4, 1958, pp. 185-208. MR

**21**#4936. Takao Sumiyama, "Cunningham chains of length 8 and 9,"

*Abstracts Amer. Math. Soc.*, v. 4, 1983, p. 192, 83T-05-72. Takao Sumiyama, "The distribution of Cunningham chains,"

*Abstracts Amer. Math. Soc.*, v. 4, 1983, p. 489, 83T-10-405.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp.
**53**(1989), 751-759 - MSC: Primary 11A41; Secondary 11Y11
- DOI: https://doi.org/10.1090/S0025-5718-1989-0979939-8
- MathSciNet review: 979939