Computing greatest common divisors and factorizations in quadratic number fields
HTML articles powered by AMS MathViewer
- by Erich Kaltofen and Heinrich Rolletschek PDF
- Math. Comp. 53 (1989), 697-720 Request permission
Abstract:
In a quadratic number field ${\mathbf {Q}}(\sqrt D )$, D a squarefree integer, with class number 1, any algebraic integer can be decomposed uniquely into primes, but for only 21 domains Euclidean algorithms are known. It was shown by Cohn [5] that for $D \leq - 19$ even remainder sequences with possibly nondecreasing norms cannot determine the GCD of arbitrary inputs. We extend this result by showing that there does not even exist an input in these domains for which the GCD computation becomes possible by allowing nondecreasing norms or remainders whose norms are not as small as possible. We then provide two algorithms for computing the GCD of algebraic integers in quadratic number fields ${\mathbf {Q}}(\sqrt D )$. The first applies only to complex quadratic number fields with class number 1, and is based on a short vector construction in a lattice. Its complexity is $O({S^3})$, where S is the number of bits needed to encode the input. The second algorithm allows us to compute GCD’s of algebraic integers in arbitrary number fields (ideal GCD’s if the class number is $> 1$). It requires only $O({S^2})$ binary steps for fixed D, but works poorly if D is large. Finally, we prove that in any domain, the computation of the prime factorization of an algebraic integer can be reduced in polynomial time to the problem of factoring its norm into rational primes. Our reduction is based on a constructive version of a theorem by A. Thue.References
- E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms. I, Acta Math. 87 (1952), 259–323. MR 53162, DOI 10.1007/BF02392288
- Alfred Brauer and R. L. Reynolds, On a theorem of Aubry-Thue, Canad. J. Math. 3 (1951), 367–374. MR 48487, DOI 10.4153/cjm-1951-042-6 B. F. Caviness & G. E. Collins, Algorithms for Gaussian Integer Arithmetic, Proc. 1976 ACM Symp. Symbolic Algebraic Comp., 1976, pp. 36-45.
- H. Chatland and H. Davenport, Euclid’s algorithm in real quadratic fields, Canad. J. Math. 2 (1950), 289–296. MR 41885, DOI 10.4153/cjm-1950-026-7
- P. M. Cohn, On the structure of the $\textrm {GL}_{2}$ of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5–53. MR 207856, DOI 10.1007/BF02684355
- George E. Cooke, A weakening of the Euclidean property for integral domains and applications to algebraic number theory. I, J. Reine Angew. Math. 282 (1976), 133–156. MR 406973, DOI 10.1515/crll.1976.282.133
- George Cooke and Peter J. Weinberger, On the construction of division chains in algebraic number rings, with applications to $\textrm {SL}_{2}$, Comm. Algebra 3 (1975), 481–524. MR 387251, DOI 10.1080/00927877508822057
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Helmut Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksightigung der Anwendungsgebiete. Band LIX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). MR 0051844, DOI 10.1007/978-3-642-52795-1
- Loo-keng Hua, On the least solution of Pell’s equation, Bull. Amer. Math. Soc. 48 (1942), 731–735. MR 7400, DOI 10.1090/S0002-9904-1942-07768-8
- Adolf Hurwitz, Mathematische Werke. Bd. I: Funktionentheorie, Birkhäuser Verlag, Basel-Stuttgart, 1962 (German). Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich. MR 0154777
- Ravi Kannan, Algorithmic geometry of numbers, Annual review of computer science, Vol. 2, Annual Reviews, Palo Alto, CA, 1987, pp. 231–267. MR 921497
- Ravindran Kannan and Achim Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), no. 4, 499–507. MR 573842, DOI 10.1137/0208040
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878 G. Lamé, "Note sur la limite du nombre des divisions dans la recherche du plus grand diviseur entre deux nombres entiers," C. R. Acad. Sci. Paris, v. 19, 1844, pp. 867-870.
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Daniel Lazard, Le meilleur algorithme d’Euclide pour $K[X]$ et $Z$, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 1, A1–A4. MR 427214
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- Trygve Nagell, Sur un théorème d’Axel Thue, Ark. Mat. 1 (1952), 489–496 (French). MR 49919, DOI 10.1007/BF02591358
- Michael Pohst and Hans Zassenhaus, An effective number geometric method of computing the fundamental units of an algebraic number field, Math. Comp. 31 (1977), no. 139, 754–770. MR 498486, DOI 10.1090/S0025-5718-1977-0498486-5
- Heinrich Rolletschek, The Euclidean algorithm for Gaussian integers, Computer algebra (London, 1983) Lecture Notes in Comput. Sci., vol. 162, Springer, Berlin, 1983, pp. 12–23. MR 774800, DOI 10.1007/3-540-12868-9_{8}7
- Heinrich Rolletschek, On the number of divisions of the Euclidean algorithm applied to Gaussian integers, J. Symbolic Comput. 2 (1986), no. 3, 261–291. MR 860539, DOI 10.1016/S0747-7171(86)80027-X
- Heinrich Rolletschek, Shortest division chains in imaginary quadratic number fields, J. Symbolic Comput. 9 (1990), no. 3, 321–354. MR 1056631, DOI 10.1016/S0747-7171(08)80016-8
- Pierre Samuel, About Euclidean rings, J. Algebra 19 (1971), 282–301. MR 280470, DOI 10.1016/0021-8693(71)90110-4
- H. Zantema, Class numbers and units, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 213–234. MR 702518
- René Schoof, Elliptic curves over finite fields and the computation of square roots mod $p$, Math. Comp. 44 (1985), no. 170, 483–494. MR 777280, DOI 10.1090/S0025-5718-1985-0777280-6 A. Schönhage, "Schnelle Kettenbruchentwicklungen," Acta Inform., v. 1, 1971, pp. 139-144.
- Daniel Shanks, Solved and unsolved problems in number theory, 2nd ed., Chelsea Publishing Co., New York, 1978. MR 516658
- H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 222050, DOI 10.1307/mmj/1028999653 A. Thue, "Et par antydninger til en taltheoretisk methode," Vid. Selsk. Forhandlinger Christiania, no. 7, 1902. P. S. Wang, A p-adic Algorithm for Univariate Partial Fractions, Proc. 1981 ACM Symp. Symbolic Algebraic Comput., 1981, pp. 212-217.
- Peter J. Weinberger, On Euclidean rings of algebraic integers, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 321–332. MR 0337902
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 697-720
- MSC: Primary 11Y40; Secondary 11R11, 11R27, 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-1989-0982367-2
- MathSciNet review: 982367