Some properties of rank-$2$ lattice rules
Authors:
J. N. Lyness and I. H. Sloan
Journal:
Math. Comp. 53 (1989), 627-637
MSC:
Primary 65D32
DOI:
https://doi.org/10.1090/S0025-5718-1989-0982369-6
MathSciNet review:
982369
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A rank-2 lattice rule is a quadrature rule for the (unit) s-dimensional hypercube, of the form \[ Qf = (1/{n_1}{n_2})\sum \limits _{{j_1} = 1}^{{n_1}} {\sum \limits _{{j_2} = 1}^{{n_2}} {\bar f({j_1}{{\mathbf {z}}_1}/{n_1} + {j_2}{{\mathbf {z}}_2}/{n_2}),} } \] which cannot be re-expressed in an analogous form with a single sum. Here $\bar f$ is a periodic extension of f, and ${{\mathbf {z}}_1}$, ${{\mathbf {z}}_2}$ are integer vectors. In this paper we discuss these rules in detail; in particular, we categorize a special subclass, whose leading one- and two-dimensional projections contain the maximum feasible number of abscissas. We show that rules of this subclass can be expressed uniquely in a simple tricycle form.
-
H. Conroy, "Molecular Schrödinger equation, VIII: A new method for the evaluation of multidimensional integrals," J. Chem. Phys., v. 47, 1967, pp. 5307-5318.
- Seymour Haber, Numerical evaluation of multiple integrals, SIAM Rev. 12 (1970), 481–526. MR 285119, DOI https://doi.org/10.1137/1012102
- Seymour Haber, Parameters for integrating periodic functions of several variables, Math. Comp. 41 (1983), no. 163, 115–129. MR 701628, DOI https://doi.org/10.1090/S0025-5718-1983-0701628-X
- Edmund Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140–151 (German). MR 143329, DOI https://doi.org/10.1007/BF01387711
- Loo Keng Hua and Yuan Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981. Translated from the Chinese. MR 617192
- P. Keast, Optimal parameters for multidimensional integration, SIAM J. Numer. Anal. 10 (1973), 831–838. MR 353636, DOI https://doi.org/10.1137/0710068
- N. M. Korobov, Properties and calculation of optimal coefficients, Soviet Math. Dokl. 1 (1960), 696–700. MR 0120768
- Dominique Maisonneuve, Recherche et utilisation des “bons treillis”. Programmation et résultats numériques, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121–201 (French, with English summary). MR 0343529
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI https://doi.org/10.1090/S0002-9904-1978-14532-7
- Ian H. Sloan, Lattice methods for multiple integration, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 131–143. MR 793949, DOI https://doi.org/10.1016/0377-0427%2885%2990012-3
- Ian H. Sloan and Philip J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), no. 1, 116–128. MR 874739, DOI https://doi.org/10.1137/0724010
- Ian H. Sloan and James N. Lyness, The representation of lattice quadrature rules as multiple sums, Math. Comp. 52 (1989), no. 185, 81–94. MR 947468, DOI https://doi.org/10.1090/S0025-5718-1989-0947468-3
- S. C. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. (4) 73 (1966), 293–317. MR 218018, DOI https://doi.org/10.1007/BF02415091
- S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
Retrieve articles in Mathematics of Computation with MSC: 65D32
Retrieve articles in all journals with MSC: 65D32
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society