## An algorithm based on the FFT for a generalized Chebyshev interpolation

HTML articles powered by AMS MathViewer

- by Takemitsu Hasegawa, Tatsuo Torii and Hiroshi Sugiura PDF
- Math. Comp.
**54**(1990), 195-210 Request permission

## Abstract:

An algorithm for a generalized Chebyshev interpolation procedure, increasing the number of sample points more moderately than doubling, is presented. The FFT for a real sequence is incorporated into the algorithm to enhance its efficiency. Numerical comparison with other existing algorithms is given.## References

- Maria Branders and Robert Piessens,
*An extension of Clenshaw-Curtis quadrature*, J. Comput. Appl. Math.**1**(1975), 55–65. MR**371022**, DOI 10.1016/0771-050x(75)90009-1 - William L. Briggs,
*Further symmetries of in-place FFTs*, SIAM J. Sci. Statist. Comput.**8**(1987), no. 4, 644–654. MR**892311**, DOI 10.1137/0908057
E. O. Brigham, - Roland Bulirsch,
*Bemerkungen zur Romberg-Integration*, Numer. Math.**6**(1964), 6–16 (German). MR**165688**, DOI 10.1007/BF01386048 - C. W. Clenshaw and A. R. Curtis,
*A method for numerical integration on an automatic computer*, Numer. Math.**2**(1960), 197–205. MR**117885**, DOI 10.1007/BF01386223 - Philip J. Davis and Philip Rabinowitz,
*Methods of numerical integration*, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR**760629** - Elise de Doncker-Kapenga,
*Asymptotic expansions and their applications in numerical integration*, Numerical integration (Halifax, N.S., 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 141–151. MR**907116** - David Elliott,
*Truncation errors in two Chebyshev series approximations*, Math. Comp.**19**(1965), 234–248. MR**181084**, DOI 10.1090/S0025-5718-1965-0181084-2 - H. Engels,
*Numerical quadrature and cubature*, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR**587486**
G. Fairweather and P. Keast, - W. Morven Gentleman,
*Implementing Clenshaw-Curtis quadrature. I. Methodology and experience*, Comm. ACM**15**(1972), 337–342. MR**0327001**, DOI 10.1145/355602.361310 - W. Morvin Gentleman,
*Implementing Clenshaw-Curtis quadrature. II. Computing the cosine transformation*, Comm. ACM**15**(1972), 343–346. MR**0327002**, DOI 10.1145/355602.361311 - Takemitsu Hasegawa, Tatsuo Torii, and Ichizo Ninomiya,
*Generalized Chebyshev interpolation and its application to automatic quadrature*, Math. Comp.**41**(1983), no. 164, 537–553. MR**717701**, DOI 10.1090/S0025-5718-1983-0717701-6 - Takemitsu Hasegawa and Tatsuo Torii,
*Indefinite integration of oscillatory functions by the Chebyshev series expansion*, J. Comput. Appl. Math.**17**(1987), no. 1-2, 21–29. MR**884258**, DOI 10.1016/0377-0427(87)90035-5 - J. N. Lyness,
*The calculation of Fourier coefficients by the Möbius inversion of the Poisson summation formula. I. Functions whose early derivatives are continuous*, Math. Comp.**24**(1970), 101–135. MR**260230**, DOI 10.1090/S0025-5718-1970-0260230-8 - H. O’Hara and Francis J. Smith,
*Error estimation in the Clenshaw-Curtis quadrature formula*, Comput. J.**11**(1968/69), 213–219. MR**230469**, DOI 10.1093/comjnl/11.2.213
J. Oliver, - Robert Piessens and Maria Branders,
*Numerical solution of integral equations of mathematical physics, using Chebyshev polynomials*, J. Comput. Phys.**21**(1976), no. 2, 178–196. MR**458972**, DOI 10.1016/0021-9991(76)90010-3 - Robert Piessens, Elise de Doncker-Kapenga, Christoph W. Überhuber, and David K. Kahaner,
*QUADPACK*, Springer Series in Computational Mathematics, vol. 1, Springer-Verlag, Berlin, 1983. A subroutine package for automatic integration. MR**712135**, DOI 10.1007/978-3-642-61786-7 - R. Piessens,
*Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms*, Numerical integration (Halifax, N.S., 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 35–51. MR**907110**
I. Robinson, - Ian H. Sloan and W. E. Smith,
*Product-integration with the Clenshaw-Curtis and related points. Convergence properties*, Numer. Math.**30**(1978), no. 4, 415–428. MR**494863**, DOI 10.1007/BF01398509 - Ian H. Sloan and William E. Smith,
*Product integration with the Clenshaw-Curtis points: implementation and error estimates*, Numer. Math.**34**(1980), no. 4, 387–401. MR**577405**, DOI 10.1007/BF01403676 - Ian H. Sloan and William E. Smith,
*Properties of interpolatory product integration rules*, SIAM J. Numer. Anal.**19**(1982), no. 2, 427–442. MR**650061**, DOI 10.1137/0719027 - Paul N. Swarztrauber,
*Symmetric FFTs*, Math. Comp.**47**(1986), no. 175, 323–346. MR**842139**, DOI 10.1090/S0025-5718-1986-0842139-3

*The Fast Fourier Transform and its applications*, Prentice-Hall, Englewood Cliffs, NJ, 1988.

*An investigation of Romberg quadrature*, ACM Trans. Math. Software

**4**(1978), 316-322. W. M. Gentleman and G. Sande,

*Fast Fourier transform for fun and profit*, 1966, Fall Joint Computer Conference, AFIPS Conference Proceedings, vol. 29, 1966, pp. 563-578.

*Doubly-adaptive Clenshaw-Curtis quadrature method*, Comput. J.

**15**(1972), 141-147.

*A comparison of numerical integration programs*, J. Comput. Appl. Math.

**5**(1979), 207-223.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**54**(1990), 195-210 - MSC: Primary 65D05; Secondary 41A55, 42A15, 65D30, 65T20
- DOI: https://doi.org/10.1090/S0025-5718-1990-0990599-0
- MathSciNet review: 990599