Generalized noninterpolatory rules for Cauchy principal value integrals
HTML articles powered by AMS MathViewer
- by Philip Rabinowitz PDF
- Math. Comp. 54 (1990), 271-279 Request permission
Abstract:
Consider the Cauchy principal value integral \[ I(kf;\lambda ) = \oint k(x)\frac {{f(x)}}{{x - \lambda }} dx,\quad - 1 < \lambda < 1.\] If we approximate $f(x)$ by $\sum _{j = 0}^N\;{a_j}{p_j}(x;w)$ where $\{ {p_j}\}$ is a sequence of orthonormal polynomials with respect to an admissible weight function w and ${a_j} = (f,{p_j})$, then an approximation to $I(kf;\lambda )$ is given by $\sum _{j = 0}^N\;{a_j}I(k{p_j};\lambda )$. If, in turn, we approximate ${a_j}$ by ${a_{jm}} = \sum _{i = 1}^m\;{w_{im}}f({x_{im}}){p_j}({x_{im}})$, then we get a double sequence of approximations $\{ Q_m^N(f;\lambda )\}$ to $I(kf;\lambda )$. We study the convergence of this sequence by relating it to the sequence of approximations associated with $I(wf;\lambda )$ which has been investigated previously.References
- Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), no. 178, 725–735. MR 878702, DOI 10.1090/S0025-5718-1987-0878702-4
- Luigi Gatteschi, On some orthogonal polynomial integrals, Math. Comp. 35 (1980), no. 152, 1291–1298. MR 583506, DOI 10.1090/S0025-5718-1980-0583506-X
- Peter Henrici, Applied and computational complex analysis. Vol. 3, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1986. Discrete Fourier analysis—Cauchy integrals—construction of conformal maps—univalent functions; A Wiley-Interscience Publication. MR 822470 I. P. Natanson, Constructive function theory, Vol. II (transl. by J. R. Schulenberger), Ungar, New York, 1955. D. F. Paget, Generalized product integration, Ph.D. Thesis, Univ. of Tasmania, Hobart, 1976.
- R. Piessens, Modified Clenshaw-Curtis integration and applications to numerical computation of integral transforms, Numerical integration (Halifax, N.S., 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 35–51. MR 907110 P. Rabinowitz, Some practical aspects in the numerical evaluation of Cauchy principal value integrals, Internat. J. Comput. Math. 20 (1986), 283-298.
- Philip Rabinowitz, The convergence of noninterpolatory product integration rules, Numerical integration (Halifax, N.S., 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 1987, pp. 1–16. MR 907108
- P. Rabinowitz and D. S. Lubinsky, Noninterpolatory integration rules for Cauchy principal value integrals, Math. Comp. 53 (1989), no. 187, 279–295. MR 972372, DOI 10.1090/S0025-5718-1989-0972372-4
- Philip Rabinowitz and William E. Smith, Interpolatory product integration for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B 29 (1987), no. 2, 195–202. MR 905804, DOI 10.1017/S0334270000005713
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 271-279
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1990-0990601-6
- MathSciNet review: 990601