## On an integer’s infinitary divisors

HTML articles powered by AMS MathViewer

- by Graeme L. Cohen PDF
- Math. Comp.
**54**(1990), 395-411 Request permission

## Abstract:

The notions of unitary divisor and biunitary divisor are extended in a natural fashion to give*k-ary divisors*, for any natural number

*k*. We show that we may sensibly allow

*k*to increase indefinitely, and this leads to

*infinitary divisors*. The infinitary divisors of an integer are described in full, and applications to the obvious analogues of the classical perfect and amicable numbers and aliquot sequences are given.

## References

- Krishnaswami Alladi,
*On arithmetic functions and divisors of higher order*, J. Austral. Math. Soc. Ser. A**23**(1977), no. 1, 9–27. MR**439721**, DOI 10.1017/s1446788700017304 - Eckford Cohen,
*Arithmetical functions associated with the unitary divisors of an integer*, Math. Z.**74**(1960), 66–80. MR**112861**, DOI 10.1007/BF01180473 - Richard K. Guy,
*Unsolved problems in number theory*, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR**656313** - Peter Hagis Jr.,
*Unitary amicable numbers*, Math. Comp.**25**(1971), 915–918. MR**299551**, DOI 10.1090/S0025-5718-1971-0299551-2 - Peter Hagis Jr.,
*Lower bounds for unitary multiperfect numbers*, Fibonacci Quart.**22**(1984), no. 2, 140–143. MR**742842** - Peter Hagis Jr.,
*A systematic search for unitary hyperperfect numbers*, Fibonacci Quart.**25**(1987), no. 1, 6–10. MR**872573** - Mohan Lal,
*Iterates of the unitary totient function*, Math. Comp.**28**(1974), 301–302. MR**335419**, DOI 10.1090/S0025-5718-1974-0335419-3 - Benoit B. Mandelbrot,
*The fractal geometry of nature*, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR**665254** - M. V. Subbarao and L. J. Warren,
*Unitary perfect numbers*, Canad. Math. Bull.**9**(1966), 147–153. MR**195796**, DOI 10.4153/CMB-1966-018-4 - D. Suryanarayana,
*The number of $k$-ary divisors of an integer*, Monatsh. Math.**72**(1968), 445–450. MR**236130**, DOI 10.1007/BF01300368 - D. Suryanarayana,
*The number of bi-unitary divisors of an integer*, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971) Lecture Notes in Math., Vol. 251, Springer, Berlin, 1972, pp. 273–282. MR**0332692**
D. Suryanarayana and R. Sita Rama Chandra Rao, - Marta Sved,
*Divisibility—with visibility*, Math. Intelligencer**10**(1988), no. 2, 56–64. MR**932163**, DOI 10.1007/BF03028359 - Herman J. J. te Riele,
*On generating new amicable pairs from given amicable pairs*, Math. Comp.**42**(1984), no. 165, 219–223. MR**725997**, DOI 10.1090/S0025-5718-1984-0725997-0 - Charles R. Wall,
*Bi-unitary perfect numbers*, Proc. Amer. Math. Soc.**33**(1972), 39–42. MR**289403**, DOI 10.1090/S0002-9939-1972-0289403-9 - Charles R. Wall,
*The fifth unitary perfect number*, Canad. Math. Bull.**18**(1975), no. 1, 115–122. MR**376515**, DOI 10.4153/CMB-1975-021-9

*The number of bi-unitary divisors of an integer*. II, J. Indian Math. Soc. (N.S.)

**39**(1975), 261-280 (1976).

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**54**(1990), 395-411 - MSC: Primary 11A25; Secondary 11A05
- DOI: https://doi.org/10.1090/S0025-5718-1990-0993927-5
- MathSciNet review: 993927