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MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER
GENERATORS WITH MODULUS 2ß : AN EXHAUSTIVE

ANALYSIS FOR ß = 32 AND A PARTIAL
ANALYSIS FOR ß = 48

GEORGE S. FISHMAN

Abstract. This paper presents the results of a search to find optimal maximal

period multipliers for multiplicative congruential random number generators

with moduli 2 and 2 . Here a multiplier is said to be optimal if the distance

between adjacent parallel hyperplanes on which A--tuples lie does not exceed the

minimal achievable distance by more than 25 percent for k = 2.6. This

criterion is considerably more stringent than prevailing standards of acceptabil-

ity and leads to a total of only 132 multipliers out of the more than 536 million

candidate multipliers that exist for modulus 2 and to only 42 multipliers in a

sample of about 67.1 million tested among the more than 351 x 10 candidate

multipliers for modulus 2

Section 1 reviews the basic properties of multiplicative congruential gen-

erators and §2 describes worst case performance measures. These include the

maximal distance between adjacent parallel hyperplanes, the minimal number

of parallel hyperplanes, the minimal distance between A--tuples and the dis-

crepancy. For modulus 2 , §3 presents the ten best multipliers and compares

their performances with those of two multipliers that have been recommended

in the literature. Comparisons using packing measures in the space of A'-tuples

and in the dual space are also made. For modulus 2 , §4 also presents anal-

ogous results for the five best multipliers and for two multipliers suggested in

the literature.

Consider the multiplicative congruential random number generator

(1) {Z0,ZI = AZI_]    (modM);  /= 1,2,...}

with multiplier A and modulus M. For the prime modulus M = 2 - 1,

Fishman and Moore [9] presented results of an exhaustive search to find those

multipliers A that perform best, according to a specified criterion, on a bat-

tery of theoretical measures of randomness. The present study gives analogous

results for modulus M = 2 , commonly employed on 32 bit wordsize comput-

ers, and for M = 2    , commonly used on CDC computers. Section 1 describes
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features of this class of generators, §2 describes the theoretical measures used to

assess the extent of randomness for each multiplier and §3 presents results for
29

the best ten multipliers A out of the possible 2    = 536, 870, 912 candidate

multipliers for M = 2   , and for the five best multipliers among 2    « 67.1
48

million studied for M = 2   . For each modulus, it also lists results for multi-

pliers suggested in the literature.

1.   Properties of the generator

Generators with modulus M = 2 , ß > 3, have been in common use for

over thirty years. Their appeal comes from the computational efficiency that

they offer on binary-word computers by replacing division and multiplication

operators by shift and addition operations in the modulo reduction step in (1).

If A = ±5 (mod 8), and the chosen seed Z0 is odd, then the maximal achiev-

able period T = 2ß~ is realized before the generator repeats itself. Table 1 lists

the maximal period multipliers A together with the sequences they generate for

given seeds ZQ . Because of the greater uniformity over the set {1, ... , 2 },

we chose to study A = 5 (mod 8). Note that all maximal period generators

with M = 2   produce odd integers only.

Table 1

Multiplicative congruential generators Z( = AZt_x (mod M)

(M = 2ß, ß>3)

Generated sequence

A Z0 is a permutation of

5 (mod 8) l(mod4) {4j + 1 ; j = 0, 1, ... , 2ß~2 - 1}

5 (mod 8) 3 (mod 4) {4y + 3 ;  j = 0, 1 , ... , 2ß~2 - 1}

3 (mod 8) lor 3 (mod 8) {Sj + 1 and &j + 3;  j = 0, 1 , ... , 2/,~3 - 1}

3 (mod 8) 5 or 7 (mod 8) {ij + 5 and 87 + 7 ;  j = 0, 1 , ... , 2ß~3 - 1}

Since every maximal period multiplier A = 5 (mod 8) belongs to the set

(2a) j/= {5 + 8(i-l);i = l,...,2'~3},

2    candidate multipliers exist for M = 2   , and 2    exist for M = 2   . Also,

since

52'-1 = 5(1 + 3x8)'"'=5   (mod 8),        ¿=1,2,...,

the set sf has the equivalent form

(2b) j/ = {52'"'    (mod2/?);  i = 1, ... , 2/î"3},

which enables one to reduce the number of candidate multipliers that need to

be considered.

For every sequence

(3) Z, = AZ¡_X    (mod 2ß),        A &tf ,  i = 1, ... , 2ß~2,
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there exists a reversed sequence

(4) Zi_x=BZj   (mod 2*),        B e st,  i = 1, ... , 2ß~2.

By direct substitution,

AB = 1    mod 2ß .

Let A = 52'"1 (mod 2*) and B = 52j~] (mod 2ß). Since the smallest m

for which 5'" = 1 (mod 2ß) is m = 2ß~2, one has 2i-l + 2j -I = 2ß~2,

i + j = 2ß~3 + 1, so that 1 < min(/, ;') < 2ß~4.

Since {Z.} from (3) and {Z(} from (4) have the exact same randomness

properties, it suffices to study the first 2ß~   candidate multipliers in (2b). For
32 28

M = 2 there are 2 = 268, 435, 456 candidates, and our analysis evaluated

all of them. For M = 24 , the time to evaluate each of the 2 4 « 1.76 x 10'
32

multipliers is considerably greater than the corresponding time for M = 2   .
")f\ ft

Therefore, our analysis only evaluated the first 2 « 67.1 x 10 multipliers

generated by the form (2b).

2.   Theoretical measures

Let U¡ — ZJM, and consider the sequence of points or k-tuples

(5) Tk = {Ulk = (Ul+x,...,U,+k);i=l,2,...}.

Ideally, one wants the sequence of points ^ to be equidistributed in the k-

dimensional unit hypercube for k — 2,3, ... . However, the form of the gen-

erator ( 1 ) limits the extent to which one can achieve this ideal. For example,

observe that an ideal generator of the integers {4j+ I; j -0, I, ... , 2ß~2 - 1}

produces 2 ' equidistributed points in the A:-dimensional unit hypercube

%? whereas the generator (1) with M = 2ß , A = 5 (mod 8) and odd Z0

produces only T = M/4 = 2 points in this hypercube. Hereafter, we take

M = 2ß unless otherwise specified.

2.1. Maximal distance between parallel hyperplanes. One way to study the dis-

tributional properties of T"k is through the lattice structure that ( 1 ) induces. It

is well known that all /c-tuples generated by (1) with these A and M lie on

sets of hyperplanes of the form

A-I

(6) T,*JUi+j-°    (modl)> /=!,..., M/4,
7=0

where

(7a)   q = (q0,...,qk_x)e{-M,-M+l,...,-l,0, l,..., M-I},

(7b) q^O,

A-l

(7c) q(A) = J2 QjAJ = ° (mod M/4) '
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and where the distance between any two adjacent parallel hyperplanes is

(8) dk(q;A,M) =

(l£W)
1/2

and Ik(q) is a fixed constant. Without loss of generality (see Fishman and

Moore [9, p. 29]), we restrict attention to the set €(A) = {q : Ik(q) = 1,

satisfing (7a), (7b) and (7c)}.

To assess the extent of equidistribution, one has the maximal distance be-

tween adjacent parallel hyperplanes

(9) dk(A, M)= max dk(q;A,M)K <¡€€(A)    K

as a worst case measure for the multiplier A in k dimensions. When using (9)

to compare Ar-tuple performance for several alternative multipliers, one prefers

the multiplier that gives the minimal distance, since this implies smaller empty

regions in ß? for this multiplier than for the other multipliers. However, there

is a limit to how small this maximal distance can be; in particular, it is known

that (Cassels [4, p. 332])

(10)
.l/A

(M/4)^d'k(A,M)>yk =

1/4
S

-1/6
5

1/4
Ï

3/10

1/12

(3/4

2

2

2

(3/64)

k = 2,

k = 3,

k = 4,

k = 5,

k = 6.

32
For M = 2    one has

,32,

.2840 x 10"

.8700 x 10"

dk(A,2   )> \ .4645 x 10

.1269x 10

.1993 x 10

48
For M = 2    one has

d;(A,24°)>{

.1109 x 10"

.2158x 10

.2903 x 10"

.1381 x 10"

.3814 x 10"

-4

£ = 2,

k = 3,

k = 4,

£ = 5,

k = 6.

k = 2,

k = 3,

k = 4,

k = 5,

k = 6.

Originally, Coveyou and MacPherson [5] advocated the minimization of the

wave number l/dk(q; A, M) and called the procedure the spectral test.
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2.2. Minimal number of parallel hyperplanes. A second measure of equidis-

tributions, suggested by Marsaglia [11], is the number of parallel hyperplanes

Nk(q; A, M) that (6) induces, subject to (7), in ffî  . For a particular A, a

small number indicates that there exist large regions in %? that contain no

rc-tuples. Dieter [7] showed that the maximal number of parallel hyperplanes

that intersect %?k is
A-l

N'k(q;A,M) = J2\<lJ\-l-
7=0

Note that all these hyperplanes may not be occupied. A worst case measure is

(11) Nl(A, M)=  min N'(q;A,M).
<1&€(A)

For several multipliers A , one prefers the one for which Nk(A, M) is largest.

Marsaglia [11] gave the upper bound

N*k(A,M)<[k\(M/4)]
i/k

so that

32,
Nk(A,2^)<{

46341,

1861,

401,

167,

96,

k= 1,2,..

k = 2,

k = 3,

k = 4,

k = 5,

k = 6,

and

K(A,1
48.

11863284,    A: = 2,

75020,    k = 3,

6411,       rC = 4,

1532,    k = 5,

608,    k = 6.

Knuth [10, p. 92] pointed out that the ordering of multipliers may differ with

regard to d*(A, M) and Nk(A, M) in a way that justifies valuing the ordering

based on dk(A, M) more highly. Also, see Fishman and Moore [9, p. 31].

2.3. Distance between points. As an alternative measure of equidistribution,

Smith [18] suggested the minimal distance between Ac-tuples,

;i2)       c*k(A,M)
1

min      77
l</',m<T M

i^m

k-\

7=0

' + 7 m+ji

1/2

T = 2P

Since the total number of points is fixed at T, the smaller c*k(A, M) is for a

given A, the more clustered are points in <%* . Therefore, when comparing

several multipliers in k dimensions, one prefers the one that gives the maximal

c*k(A,M). Whereas d*k(A,M) measures distance between adjacent parallel

hyperplanes in the space of the {Z;}, c*k(A, M) measures distance between

points in this space.   Since by duality,   l/c*k(A, M) is the maximal distance
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between adjacent parallel hyperplanes in the q-space, one has (Cassels [4, p.

332])

(13)
A/k

ck(A,M)<l/yk(M/4)'

where yk  is defined in (10).  The duality also facilitates the computation of

c*k(A , M) using the algorithm in Dieter [7] for computing d*k(A, M).

2.4.    Discrepancy. Let

w„, = (z,+1,...,z,+,),      i=i.r.

To assess equidistribution, Niederreiter [14] has proposed the discrepancy mea-

sure

(14)   D(k)(A,M)= max
number of W1A., ... , W^ k in 3?    volume of 32

N MK

N - I, ... , T, where 32 ranges over all sets of points of the form 32 =

{(wl, ... , wr)\ax < wx < ßx, ... , ak < wk < ßk). Here aj and /?. are

integers in the range 0 < a< ß} < M for 1 < j < k , so that 32 has volume

Ií=1 (/*,-<*,)•

Since exact computation of Dn\a, M) is not feasible, several theoretical

bounds have been proposed, principally in Niederreiter [13, 15] and Ahrens

and Dieter [1]. For the case in which no member of the set {(M )~ qq' s 0

(mod 1), q&tf(A)} intersects 32 and A= T, Ahrens and Dieter [ 1, Theorem

5.17] gave the computable lower bound

(15) Dlk)(A,M)> 1/ min
A--1

g,¥0

\

where m denotes the number of nonzero qi,

m" , if m — 2 or 3,

m'"/(m - l)mH  ,    ifw>4,

(16)

H.=

|m/2J + l

E '
7=0

i: ^)(Lm/2j + l-7r_'/(' D!

For k = 2 , Niederreiter [14, 16] provided the upper bounds

(17)

and

(18)

where ax

of A/2ß~

D[2)(A,M)<    l+5>,)/T
i-i

,(2)
D'f{A, M)<[1 + C(K)lo%T]/T,

. , a   are the partial quotients in the continued fraction expansion

K = max{ax , ... , a),   C(K) = 2/log2 for   1 < K < 3  and
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C(K) = (K+ l)/log(K +1) for K > 4. Earlier, Dieter [6] derived closely re-

lated results based on continued fractions to nearest integers rather than regular

continued fractions.

For k > 2 and M = 2ß   (ß > 3), Niederreiter [17, Theorems 4.1 and 5.2]
gave the upper bound

(19) Dik)(A,M)<^ + R{k)(A,M,2ß-2),

where
R(k){A^M^ß-2)<(2log2M)k + 3(2\og2M)k-

and

(k^-y^^-2)

A-l

p{k)(A,2ß 2)=  min TT max(l, 2|9/|).
ief(A) -,

i=0

Unfortunately, the author became aware of these results only after a consid-

erable amount of computation for this paper had been completed. Therefore,

numerical results for (19) are not reported.

3. Analysis

This section presents results for all multipliers of the form (2b) with M — 2"

for / = 1, ... , 2 and with M = 2 for i = 1, ... , 2 , using an algorithm of
Dieter [7], as described in Knuth [10, Algorithm S]. Because of the great number

of candidates, one needs to adopt a screening procedure to identify and collect

those multipliers that "perform well". For present purposes, the multipliers of

most interest are those that perform well in k = 2, ... , 6 dimensions relative

to the constraints that ( 1 ) imposes on all lattices in these dimensions. Consider

the ratios

(20) Sxk(A,M) = yk/d¡(A,M)(M/4)l/k,        k = 2,...,6.

As seen from (10), 0 < S, k(A, M) < 1 . Now the closer Sx 2(A, M), ... ,

Sx 6(A, M) are to unity, the better is the performance of this multiplier with

regard to the achievable bounds in 2, ... , 6 dimensions. Therefore, one way

to perform the screening is to identify all multipliers for which

(21) min S. ,(A, M) >S,        0 < S < 1,
2<A<6    '■*

for specified S. Based on experience in Fishman and Moore [9], we chose S -

.80. Note that any multiplier for which Sx k(A, M) > .80 for k = 2, ... ,6

guarantees that for each k the distance between adjacent hyperplanes does not

exceed the minimal achievable distance by more than 25 percent.

For M - 2 ,132 multipliers met the criterion, implying a percentage of

100 x 132/228 = .49 x 10"4. Of the 226 multipliers studied for M = 248,
42 met the criterion. Assuming that these are uniformly distributed over the

244 possible candidates, one concludes that about 100 x 42/2 = .63 x 10~4
percent of the multipliers would satisfy (21), and that there are about 11 million

such multipliers among the 2     candidates.
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Table 2a

Performance measures for selected

multipliers in Z; = AZ¡_i (mod M)

(M = 232)

Multiplier   Exponent        Dimension (A)

A = 5J  (mod 232)    j_2   3   4   5   6

1. 1099087573  9649599 5, .8920 .8563 .8604 .8420 .8325
2. 4028795517 93795525 S2 .8954 .7637 .6215 .6657 6576

53 .8920 .8401 .8269 .7460 .8547

3. 2396548189 126371437 S, .8571 .9238 .8316 .8248 .8248
4. 3203713013 245509143 S2 .7957 .7271 .7862 .6897 .6576

S} .8571 .9122 .8377 .8174 .8385

5. 2824527309  6634497 S, .9220 .8235 .8501 .8451 .8332
6. 1732073221 96810627 S2 .8290 .8325 .7113 .5458 .6576

53 .9220 .7661 .7910 .7707 .7972

7. 3934873077 181002903 Sx .8675 .8287 .8278 .8361 .8212
8. 1749966429 190877677 S2 .8744 .7153 .8012 .7617 .6367

S3 .8675 .7825 .7393 .7531 .7329

9. 392314069 160181311 S, .9095 .8292 .8536 .8489 .8198
10. 2304580733 211699269 S2 .9691 .7207 .7662 .6537 .6159

S} .9095 .8061 .7869 .7932 .7923

11. 69069        S, .4625 .3131 .4572 .5529 .3767
SUPER-DUPER        S2 .4401 .2117 .3894 .5278 .3549

Marsaglia[12,    n.a.b S} .4625 .5111 .5430 .5677 .5789

p. 275]

12. 410092949    n.a.b 5, .9121 .7670 .5725 .6612 .5842

Boroshand        S2 .9565 .7394 .4190 .5749 .5625
Niederreiter [3,        53 .9121 .6801 .7628 .4899 .6462

p. 73, « = 30]

'5, = 7k/d'k(A, M)(M/4)'/k , S2 = N*(A, M)/{k\M/4)l/k  and

Si = c¡(A,M)yk(M/4)l/k .

Not available.

For each selected multiplier and k = 2, ... , 6, we also computed the ratios

(22) S2k(A,M) = N*k(A,M)/(k\M/4)m

and

(23) S3k(A,M) = c¡(A,M)yk(M/4)l/k,

again using Dieter's algorithm.

We first present results for M = 2 . Table 2 presents ratios for (20), (22),

and (23) for the multipliers with the ten largest min2<A.<65'1 k(A, M). These

actually occur in pairs in which multipliers 1 and 2 have identical {Sx k(A, M)},

{S2 k(A, A/)}, {S3 k(A, A/)} and discrepancies, as do multipliers 3 and 4,

etc. Although the exact reason for this commonality is not immediately clear,
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Table 3

Packing measures in the sample space

cok(A,M) = nl2M[c*k(A, M)]k/4T(k/2+ 1)

(M = 232)

Multiplier Dimension (k)

A_2      3      4       5 6

1, 2       2.89 3.51 4.61    3.44 9.30
3,4       2.67 4.49 4.86    5.43 8.30
5, 6       3.09 2.66 3.86   4.05 6.13
7, 8       2.73 2.84 2.95    3.61 3.70
9, 10     3.00 3.10 3.78   4.70 5.90

11 .78    .79   .86     .88     .90
12 3.02 1.86 3.34     .42 1.74

Upper

bound
3.63 5.92 9.87 14.89 23.87

a unique relationship does exist between exponents in pairs. If the exponents
28

are i and j, then i + j (mod 2 ) = 103445124. Table 2 also presents results

for A = 69069 suggested in Marsaglia [12] and called SUPER-DUPER, and
for A = 410092949 suggested in Borosh and Niederreiter [3], who showed that

among all multipliers in (2b), this A has the smallest upper bound on discrep-

ancy for 2-tuples. A listing of the remaining 122 "best" multipliers is available

from the author.

Table 2 shows that:

(a) The first ten multipliers perform considerably better than the remaining

ones in the table with regard to the screening measures Sx k(A, M),

S2k{A,M) and S3k(A,M).

(b) For the first ten multipliers, Sx 2{A, M), ... , Sx 6(A, M) are remark-

ably close.
(c) With few exceptions, the measures 53 2(A, M), ... , S3 6(A, M) are

also remarkably close and behave essentially as S{ 2(A,M),...,

Sx 6(A, M) do. As expected, 5, 2(A, M) = S3 2(A, M).

(d) S2 2(A, M), ... , S2 6{A, M) show considerably more variation; no

doubt a reflection of the suboptimality of these multipliers with regard

to this criterion.

We now turn to another method of evaluating performance which derives

from the concept of packing a lattice with spheres (see Cassels [4]). Recall that

c*k(A, M) is the distance between nearest points in ß? . Then the volume of

a sphere with this diameter is

(24) LJA.M)^"^'^
riír/2+l)

where T(-) denotes the gamma function. Suppose one packs the lattice with

such spheres centered on each of the M/4 points ^ in (5) and at the ori-

gin. Note that these spheres merely touch and that since there are only M/4
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Table 4

Packing measures in the sample space

Hk(A,M)
4n A/2

Y(k/2+l)M[dl(A,M)]k

(M = 232)

Multiplier Dimension (A)

A 2       3       4        5 6

1, 2
3,4
5, 6
7, 8

9, 10
11
12

Upper

bound

2.89 3.72 5.41 6.30 7.95
2.67 4.67 4.72 5.69 7.51
3.09 3.31 5.15 6.42 7.99
2.73 3.37 4.64 6.08 7.32
3.00 3.38 5.24 6.56 7.24
.78    .18    .43 .77 .07

3.02 2.67  1.06 1.88 .95

3.63 5.92 9.87 14.89 23.87

Table 5

Bounds on discrepancy

(M = 2
32x

Multiplier

Dimension (A)

2 3 4 5

1 , 2 Lower 13.09 52.30        123.0       123.0        123.0

Upper0        144.4

3,4            Lower 14.28            57.10          57.10        57.10      301. i
Upper 128.5

5,6            Lower 5.727          22.91          57.52      129.7      1250.
Upper 65.19

7,8            Lower 12.74            50.96          58.83        58.83    1927.
Upper 102.4

9,10          Lower 6.300          25.20          25.20      117.1         117.1
Upper 78.23

11                Lower 3620.          14478.        14478.      14478.      14478.
Upper 145130.

12 Lower .7648 3.059     309.7       309.7       309.7
Upper 43.77

k-\
Lower bound = 10   x l/min^^,^ n,=o,í/5<o \l¡

'Upper bound = I09 x (1 + V_^=| a¡)/T .
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Table 6a

Performance measures for selected

multipliers in Z( = AZ¡_X (mod M)

(M = 2
48.,

Multiplier

A = 5J (mod 2
48.

Exponent Dimension (A)

j 2   3        4        5        6
1.   68909602460261

2.   33952834046453

3.   43272750451645

4.  127107890972165

5.   55151000561141

528329 S

8369237 S

'.i

99279091 S

55442561 5

27179349 5,

5,

6. 44485709377909 66290390456821° S,

(PASCLIB) S2

7. 19073486328125e 19 S,

(Los Alamos S2

National Laboratory) S,

.8253 .8579 .8222 .8492 .8230

.8370 .6336 .6547 .7290 .6165

.8253 .8902 .7349 .8166 .8209

.9282 .8476 .8575 .8353 .8215

.9443 .8243 .7929 .6651 .6987

.9282 .8964 .8631 .8134 .8089

.8368 .8262 .8230 .8400 .8213

.8139 .7261 .7430 .6846 .6757

.8363 .8178 .7804 .7346 .7482

.8531 .8193 .8216 .8495 .8224

.8959 .5944 .6397 .7042 .5606

.8531 .8062 .8516 .7915 .7484

.9246 .8170 .9240 .8278 .8394

.8449 .6128 .6703 .7029 .6428

.9246 .8216 .8827 .7849 .8119

.8269 .7416 .3983 .7307 .6177

.8418 .6537 .3340 .6677 .5704

.8269 .6306 .4739 .6496 .4087

.9130 .3216 .6613 .5765 .6535

.7239 .2734 .4845 .5339 .5852

.9130 .1503 .5299 .2737 .7714

,Sx=yk/d*k(A,M)(M/4)i/k N'k(A, M)/(k\M/4)[/k  and 53 = c*k{A , M)yk(M/4)l/k

' Durst [8].
: Beyer [2].

&-tuples, the proportion of the volume of X    packed with these spheres is

MLk(A, M)/4. Let

(25) cok(A, M) = 2kMLk{A, M)/4.

Using the lattice packing constants in (10), one has

3.63,    k = 2,

toAA,M)<{

5.92,

9.87,

14.89,

23.87,

£ = 3,

k = 4,

k = 5,

k = 6.

Table 3 lists cok(A, M) for the ten best and the two other suggested multi-

pliers. The benefits of the ten multipliers is again apparent, since their packings

are considerably better across dimensions than are those for the more commonly

used multipliers.
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Table 7

Packing measures in the sample space

cok(A,M) = nk¡2M[c¡(A, M)]k/4T(k/2+ I]

(M = 248)

Multiplier Dimension (A)

A        1 3      4       5        6

1 2.47 4.18 2.88    5.41 7.31
2 3.13 4.26 5.48    5.30 6.69
3 2.54 3.24 3.66   3.19 4.19
4 2.64 3.10 5.19    4.63 4.19
5 3.10 3.28 5.99    4.44 6.83
6 2.48 1.48    .50    1.72      .11
7 3.02    .02    .78      .02 5.02

Upper

bound
3.63 5.92 9.87 14.89 23.87

Table 8

Packing measures in the sample space
4nk'2

pk(A,M) =-
* Y(k/2+\)M[dUA,M)Í*A'

(M = 248)

Multiplier Dimension (A)

A 2        3       4 5 6

1 2.47 3.74 4.51 6.58 7.42
2 3.13 3.60 5.34 6.06 7.34
3 2.54 3.34 4.53 6.23 7.33
4 2.64 3.10 5.19 4.63 4.19
5 3.10 3.23 7.20 5.79 8.35
6 2.48 2.41    .25 3.10 1.33
7 3.02 .49 1.89      .95 1.86

Upper

bound
3.63 5.92 9.87  14.89 23.87

Knuth [10, p. 102] has also used this concept of packing to rate multipli-

ers. However, his approach relates to packing spheres in the dual space of

q0/M, ... , qk_JM. This is done by noting that in addition to d*k(A, M) be-

ing the maximal distance between neighboring parallel hyperplanes in the space

of T~k , the quantity 4/Md*k(A, M) is the minimal distance between points in

the dual space of q0/M,..., qk_i /M. Therefore, the volume of a sphere with

radius l/2dk(A , M) in the dual space is

(26) Wk(A,M)

A/2n

Y[k/2+ l)[2Mdk(A, M)]k

Now observe that restrictions (7) determine that the hypercube [-1, 1)    con-

tains exactly (2M) -4/M = 2 + M "     /:-dimensional points q/M. Therefore,
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Table 9

Bounds on discrepancy

(M = 248)

Dimension (A)
Multiplier_2 3_4_5_6

1 Lower3 1.024      4.095      4.095      4.095    17.30

Upper" 5.855

2 Lower .1090      .4360      .4360    3.038      3.038
Upper 1.862

3 Lower .4868    1.947      1.947      1.947      8.928
Upper 3.695

4 Lower .1187      .7413      .7413      .7413 37.98
Upper 1.734

5 Lower .0634      .2536      .3278      .3278      .9077
Upper 1.435

6 Lower .1187    1.616      1.616      1.616   28.24
Upper 1.677

7 Lower .1045 12.03      12.03      12.03      12.03
Upper 2.075

"Lower bound = 1012 x 1/ minqef(/))(/lm ITLo'^O I?/1

b Upper bound = 1012 x (1 + £?=, a¡)/T .

the volume of this hypercube packed with spheres is

4  k/2
fiJA , M) = 2k+2Mk~l WAA , M) =-r ,

k k V(k/2+l)M[d;(A,M)]k

which is the measure of packing in the dual space. This quantity is identical

with the figure of merit suggested by Knuth [10, p. 101]. Note that because of

the lattice structure in the dual space, this result is invariant when the hypercube

is translated by a vector of integers.

Table 4 lists pk(A, M) for the multipliers of interest. Again, note the better

performance of the top ten. Knuth remarks that one might say that any mul-

tiplier for which pk(A, M) > .1, k = 2, ... , 6, passes the spectral test, and

any multiplier for which pk(A, M) > 1, k = 2, ... , 6, passes the test with
flying colors. By this standard, the top ten multipliers are untouchable. Table

5 presents bounds on discrepancy computed from (15) and (17).

For M - 24 , Tables 6 through 9 present corresponding results for the

five multipliers A with the largest min2<A.<6S, k(A, M). It also presents re-

sults for A = 44485709377909, which "is"used' in PASCLIB, a collection of
utility subprograms callable from PASCAL on CDC CYBER computers, and
A = 19073486328125 used at the Los Alamos National Laboratory (Beyer [2]).
The results confirm the superiority of multipliers 1 through 5, compared to mul-

tipliers 6 and 7, as expected. A listing of the remaining 37 "best" multipliers is

available from the author.
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