## Weighted inf-sup condition and pointwise error estimates for the Stokes problem

HTML articles powered by AMS MathViewer

- by Ricardo G. Durán and Ricardo H. Nochetto PDF
- Math. Comp.
**54**(1990), 63-79 Request permission

## Abstract:

Convergence of mixed finite element approximations to the Stokes problem in the primitive variables is examined in maximum norm. Quasioptimal pointwise error estimates are derived for discrete spaces satisfying a weighted inf-sup condition similar to the Babuška -Brezzi condition. The usual techniques employed to prove the inf-sup condition in energy norm can be easily extended to the present situation, thus providing several examples to our abstract framework. The popular Taylor-Hood finite element is the most relevant one.## References

- D. N. Arnold, F. Brezzi, and M. Fortin,
*A stable finite element for the Stokes equations*, Calcolo**21**(1984), no. 4, 337–344 (1985). MR**799997**, DOI 10.1007/BF02576171 - Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius,
*Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**15**(1988), no. 2, 169–192 (1989). MR**1007396** - Ivo Babuška,
*Error-bounds for finite element method*, Numer. Math.**16**(1970/71), 322–333. MR**288971**, DOI 10.1007/BF02165003 - M. Bercovier and O. Pironneau,
*Error estimates for finite element method solution of the Stokes problem in the primitive variables*, Numer. Math.**33**(1979), no. 2, 211–224. MR**549450**, DOI 10.1007/BF01399555 - Christine Bernardi and Geneviève Raugel,
*Analysis of some finite elements for the Stokes problem*, Math. Comp.**44**(1985), no. 169, 71–79. MR**771031**, DOI 10.1090/S0025-5718-1985-0771031-7 - J. M. Boland and R. A. Nicolaides,
*Stability of finite elements under divergence constraints*, SIAM J. Numer. Anal.**20**(1983), no. 4, 722–731. MR**708453**, DOI 10.1137/0720048 - F. Brezzi,
*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with French summary). MR**365287** - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - M. Crouzeix and P.-A. Raviart,
*Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**7**(1973), no. R-3, 33–75. MR**343661**
R. G. Durán and R. H. Nochetto, - R. Durán, R. H. Nochetto, and Jun Ping Wang,
*Sharp maximum norm error estimates for finite element approximations of the Stokes problem in $2$-D*, Math. Comp.**51**(1988), no. 184, 491–506. MR**935076**, DOI 10.1090/S0025-5718-1988-0935076-9 - R. S. Falk and J. E. Osborn,
*Error estimates for mixed methods*, RAIRO Anal. Numér.**14**(1980), no. 3, 249–277 (English, with French summary). MR**592753**, DOI 10.1051/m2an/1980140302491 - Michel Fortin,
*An analysis of the convergence of mixed finite element methods*, RAIRO Anal. Numér.**11**(1977), no. 4, 341–354, iii (English, with French summary). MR**464543**, DOI 10.1051/m2an/1977110403411 - Lucia Gastaldi and Ricardo H. Nochetto,
*Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations*, RAIRO Modél. Math. Anal. Numér.**23**(1989), no. 1, 103–128 (English, with French summary). MR**1015921**, DOI 10.1051/m2an/1989230101031 - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5 - R. B. Kellogg and J. E. Osborn,
*A regularity result for the Stokes problem in a convex polygon*, J. Functional Analysis**21**(1976), no. 4, 397–431. MR**0404849**, DOI 10.1016/0022-1236(76)90035-5 - Frank Natterer,
*Über die punktweise Konvergenz finiter Elemente*, Numer. Math.**25**(1975/76), no. 1, 67–77 (German, with English summary). MR**474884**, DOI 10.1007/BF01419529 - Joachim Nitsche,
*$L_{\infty }$-convergence of finite element approximations*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 261–274. MR**0488848** - Giorgio Talenti,
*Best constant in Sobolev inequality*, Ann. Mat. Pura Appl. (4)**110**(1976), 353–372. MR**463908**, DOI 10.1007/BF02418013 - C. Taylor and P. Hood,
*A numerical solution of the Navier-Stokes equations using the finite element technique*, Internat. J. Comput. & Fluids**1**(1973), no. 1, 73–100. MR**339677**, DOI 10.1016/0045-7930(73)90027-3
R. Temam, - R. Verfürth,
*Error estimates for a mixed finite element approximation of the Stokes equations*, RAIRO Anal. Numér.**18**(1984), no. 2, 175–182. MR**743884**, DOI 10.1051/m2an/1984180201751

*Pointwise accuracy of a Petrov-Galerkin approximation to the Stokes problem*, SIAM J. Numer. Anal.

**26**(1989) (to appear).

*Navier-Stokes equations*, North Holland, Amsterdam, 1984.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**54**(1990), 63-79 - MSC: Primary 65N30; Secondary 65N15, 76-08, 76D07
- DOI: https://doi.org/10.1090/S0025-5718-1990-0995211-2
- MathSciNet review: 995211