## The collocation method for first-kind boundary integral equations on polygonal regions

HTML articles powered by AMS MathViewer

- by Yi Yan PDF
- Math. Comp.
**54**(1990), 139-154 Request permission

## Abstract:

In this paper the collocation method for first-kind boundary integral equations, by using piecewise constant trial functions with uniform mesh, is shown to be equivalent to a projection method for second-kind Fredholm equations. In a certain sense this projection is an interpolation projection. By introducing this technique of analysis, we particularly consider the case of polygonal boundaries. We give asymptotic error estimates in ${L_2}$ norm on the boundaries, and some superconvergence results for the single layer potential.## References

- Philip M. Anselone,
*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. With an appendix by Joel Davis. MR**0443383** - Douglas N. Arnold and Wolfgang L. Wendland,
*On the asymptotic convergence of collocation methods*, Math. Comp.**41**(1983), no. 164, 349–381. MR**717691**, DOI 10.1090/S0025-5718-1983-0717691-6 - Douglas N. Arnold and Wolfgang L. Wendland,
*The convergence of spline collocation for strongly elliptic equations on curves*, Numer. Math.**47**(1985), no. 3, 317–341. MR**808553**, DOI 10.1007/BF01389582 - Kendall E. Atkinson,
*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585**
K. E. Atkinson and F. R. de Hoog, - Christopher T. H. Baker,
*The numerical treatment of integral equations*, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1977. MR**0467215** - Søren Christiansen,
*On two methods for elimination of nonunique solutions of an integral equation with logarithmic kernel*, Applicable Anal.**13**(1982), no. 1, 1–18. MR**647662**, DOI 10.1080/00036818208839372 - Martin Costabel and Ernst P. Stephan,
*Collocation methods for integral equations on polygons*, Innovative numerical methods in engineering (Atlanta, Ga., 1986) Comput. Mech., Southampton, 1986, pp. 43–50. MR**902858** - Martin Costabel and Ernst P. Stephan,
*On the convergence of collocation methods for boundary integral equations on polygons*, Math. Comp.**49**(1987), no. 180, 461–478. MR**906182**, DOI 10.1090/S0025-5718-1987-0906182-9
F. R. de Hoog, - Ivan G. Graham,
*Estimates for the modulus of smoothness*, J. Approx. Theory**44**(1985), no. 2, 95–112. MR**794593**, DOI 10.1016/0021-9045(85)90073-5 - M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,
*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655** - J. Saranen and W. L. Wendland,
*On the asymptotic convergence of collocation methods with spline functions of even degree*, Math. Comp.**45**(1985), no. 171, 91–108. MR**790646**, DOI 10.1090/S0025-5718-1985-0790646-3 - J. Saranen,
*The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane*, Numer. Math.**53**(1988), no. 5, 499–512. MR**954767**, DOI 10.1007/BF01397549 - G. Schmidt,
*On spline collocation methods for boundary integral equations in the plane*, Math. Methods Appl. Sci.**7**(1985), no. 1, 74–89. MR**783387**, DOI 10.1002/mma.1670070105 - Gunther Schmidt,
*On $\epsilon$-collocation for pseudodifferential equations on a closed curve*, Math. Nachr.**126**(1986), 183–196. MR**846574**, DOI 10.1002/mana.19861260112 - I. H. Sloan and A. Spence,
*The Galerkin method for integral equations of the first kind with logarithmic kernel: theory*, IMA J. Numer. Anal.**8**(1988), no. 1, 105–122. MR**967846**, DOI 10.1093/imanum/8.1.105 - I. H. Sloan and A. Spence,
*The Galerkin method for integral equations of the first kind with logarithmic kernel: theory*, IMA J. Numer. Anal.**8**(1988), no. 1, 105–122. MR**967846**, DOI 10.1093/imanum/8.1.105 - Y. Yan and I. H. Sloan,
*Mesh grading for integral equations of the first kind with logarithmic kernel*, SIAM J. Numer. Anal.**26**(1989), no. 3, 574–587. MR**997657**, DOI 10.1137/0726034
—,

*Collocation methods for a boundary integral equation on a wedge*, in Treatment of Integral Equations by Numerical Methods (C. T. H. Baker and G. F. Miller, eds.), Academic Press, New York, 1983.

*Product integration techniques for the numerical solution of integral equations*, Ph.D. Thesis, Australian National University, 1973.

*On integral equations of the first kind with logarithmic kernel*, J. Integral Equations Appl.

**1**(1988), No. 4, 1-31.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**54**(1990), 139-154 - MSC: Primary 65N35; Secondary 65R20
- DOI: https://doi.org/10.1090/S0025-5718-1990-0995213-6
- MathSciNet review: 995213