Comparison of Birkhoff type quadrature formulae
HTML articles powered by AMS MathViewer
- by Borislav Bojanov and Geno Nikolov PDF
- Math. Comp. 54 (1990), 627-648 Request permission
Abstract:
The classical approach to the theory of quadrature formulae is based on the concept of algebraic degree of precision (ADP). A quadrature formula ${Q_1}$ is considered to be "better" than ${Q_2}$ if ${\text {ADP}}({Q_1}) > {\text {ADP}}({Q_2})$. However, there are many quadratures that use the same number of evaluations of the integrand and have the same ADP. Then, how should one compare such formulae? We show in this paper that the error of the quadrature depends monotonically on the type of data used. Roughly speaking, the lower the order of the derivatives used, the smaller is the error. As a consequence of the main result we demonstrate the existence of Birkhoff quadrature formulae of double precision.References
- K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230–235. MR 264828, DOI 10.1137/0706021
- George David Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and quadrature, Trans. Amer. Math. Soc. 7 (1906), no. 1, 107–136. MR 1500736, DOI 10.1090/S0002-9947-1906-1500736-1
- B. D. Bojanov, On the existence of optimal quadrature formulae for smooth functions, Calcolo 16 (1979), no. 1, 61–70. MR 555454, DOI 10.1007/BF02575761 —, Comparison theorems in optimal recovery, in Optimal Algorithms (Bl. Sendov, ed.), Bulg. Akad. Nauk, Sofia, 1986, pp. 15-50.
- Nira Dyn, On the existence of Hermite-Birkhoff quadrature formulas of Gaussian type, J. Approx. Theory 31 (1981), no. 1, 22–32. MR 619805, DOI 10.1016/0021-9045(81)90028-9
- N. Dyn, G. G. Lorentz, and S. D. Riemenschneider, Continuity of the Birkhoff interpolation, SIAM J. Numer. Anal. 19 (1982), no. 3, 507–509. MR 656465, DOI 10.1137/0719032 C. G. J. Jacobi, Ueber Gauss neue Metode, die Werthe der Integrale näherungsweise zu finden, J. Reine Angew. Math. 1 (1826), 301-308.
- Kurt Jetter, A new class of Gaussian quadrature formulas based on Birkhoff type data, SIAM J. Numer. Anal. 19 (1982), no. 5, 1081–1089. MR 672579, DOI 10.1137/0719078
- Kurt Jetter, Uniqueness of Gauss-Birkhoff quadrature formulas, SIAM J. Numer. Anal. 24 (1987), no. 1, 147–154. MR 874741, DOI 10.1137/0724012
- G. G. Lorentz and K. L. Zeller, Birkhoff interpolation problem: coalescence of rows, Arch. Math. (Basel) 26 (1975), 189–192. MR 369993, DOI 10.1007/BF01229724
- George G. Lorentz, Kurt Jetter, and Sherman D. Riemenschneider, Birkhoff interpolation, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 680938
- C. A. Micchelli and T. J. Rivlin, Quadrature formulae and Hermite-Birkhoff interpolation, Advances in Math. 11 (1973), 93–112. MR 318743, DOI 10.1016/0001-8708(73)90004-2
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 627-648
- MSC: Primary 65D30; Secondary 41A55
- DOI: https://doi.org/10.1090/S0025-5718-1990-1010595-7
- MathSciNet review: 1010595