$p$-adic computation of real quadratic class numbers
HTML articles powered by AMS MathViewer
- by J. Buchmann, J. W. Sands and H. C. Williams PDF
- Math. Comp. 54 (1990), 855-868 Request permission
Abstract:
Let $\mathcal {K}$ be any real quadratic field and let ${h_\mathcal {K}}$ be the class number of $\mathcal {K}$. A method utilizing the p-adic class number formula for $\mathcal {K}$ is described for evaluating ${h_\mathcal {K}}$. The technique was programmed for a micro VAX II computer and run on all fields $\mathcal {K}$ with radicand $< {10^6}$.References
- Yvette Amice and Jean Fresnel, Fonctions zêta $p$-adiques des corps de nombres abeliens réels, Acta Arith. 20 (1972), 353–384 (French). MR 337898, DOI 10.4064/aa-20-4-353-384 J. W. L. Glaisher, Residue of the product of p numbers in arithmetical progression mod $p^2$ and $p^3$, Messenger Math. 30 (1900-01), 71-92.
- Heinrich Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. II Die $p$-adische $\Gamma$-Transformation, J. Reine Angew. Math. 274(275) (1975), 224–239 (German). MR 379446, DOI 10.1515/crll.1975.274-275.224
- R. A. Mollin and H. C. Williams, Computation of the class number of a real quadratic field, Utilitas Math. 41 (1992), 259–308. MR 1162532 I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 67-72.
- R. G. Stanton, C. Sudler Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for $\sqrt {D}$, Pacific J. Math. 67 (1976), no. 2, 525–536. MR 429724, DOI 10.2140/pjm.1976.67.525
- A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp. 50 (1988), no. 182, 619–632. MR 929558, DOI 10.1090/S0025-5718-1988-0929558-3 H. Wada, A table of ideal class numbers of real quadratic fields, Kôkyûroku in Math., no. 10, Sophia University, Tokyo, 1981.
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 855-868
- MSC: Primary 11Y40; Secondary 11R29
- DOI: https://doi.org/10.1090/S0025-5718-1990-1010596-9
- MathSciNet review: 1010596