RungeKutta methods applied to fully implicit differentialalgebraic equations of index $1$
HTML articles powered by AMS MathViewer
 by Anne Kværnø PDF
 Math. Comp. 54 (1990), 583625 Request permission
Abstract:
In this paper we study the order of RungeKutta methods applied to differentialalgebraic equations of index one. We derive general order conditions for the local order ${k_L}$, and give a convergence result, which shows that the order ${k_G}$ of the global error satisfies ${k_G} \geq {k_L}  1$. We also describe some numerical experiments, which are in agreement with our results.References

K. E. Brenan and L. R. Petzold, The numerical solution of higher index differential/algebraic equations by implicit RungeKutta methods, Preprint, UCRL95906, Lawrence Livermore National Laboratory, 1986.
 Kevin Burrage and Linda Petzold, On order reduction for RungeKutta methods applied to differential/algebraic systems and to stiff systems of ODEs, SIAM J. Numer. Anal. 27 (1990), no. 2, 447–456. MR 1043615, DOI 10.1137/0727027
 J. C. Butcher, The numerical analysis of ordinary differential equations, A WileyInterscience Publication, John Wiley & Sons, Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR 878564
 J. R. Cash, Semiimplicit RungeKutta procedures with error estimates for the numerical integration of stiff systems of ordinary differential equations, J. Assoc. Comput. Mach. 23 (1976), no. 3, 455–460. MR 471312, DOI 10.1145/321958.321966
 F. H. Chipman, $A$stable RungeKutta processes, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 384–388. MR 295582, DOI 10.1007/bf01939406
 C. W. Gear, Differentialalgebraic equation index transformations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 1, 39–47. MR 922863, DOI 10.1137/0909004
 Ernst Hairer, Christian Lubich, and Michel Roche, The numerical solution of differentialalgebraic systems by RungeKutta methods, Lecture Notes in Mathematics, vol. 1409, SpringerVerlag, Berlin, 1989. MR 1027594, DOI 10.1007/BFb0093947 B. Leimkuhler, L. R. Petzold, and C. W. Gear, On the consistent initialization of differentialalgebraic equations, Dept. of Computer Science, University of Illinois, Urbana, Illinois, 1987. A. Kvaernø, Order conditions for RungeKutta methods applied to differentialalgebraic systems of index 1, Report No. 4/87, Div. of Numerical Mathematics, The Norwegian Institute of Technology, Norway, 1987.
 Per Lötstedt and Linda Petzold, Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas, Math. Comp. 46 (1986), no. 174, 491–516. MR 829621, DOI 10.1090/S0025571819860829621X S. P. Nørsett, Semi explicit RungeKutta methods, Report No. 6/74, Div. of Numerical Mathematics, The Norwegian Institute of Technology, Norway, 1974.
 Syvert P. Nørsett and Per G. Thomsen, Local error control in SDIRKmethods, BIT 26 (1986), no. 1, 100–113. MR 833835, DOI 10.1007/BF01939366
 L. R. Petzold, Order results for implicit RungeKutta methods applied to differential/algebraic systems, SIAM J. Numer. Anal. 23 (1986), no. 4, 837–852. MR 849286, DOI 10.1137/0723054
 Michel Roche, Rosenbrock methods for differential algebraic equations, Numer. Math. 52 (1988), no. 1, 45–63. MR 918316, DOI 10.1007/BF01401021 —, Implicit RungeKutta methods for differential algebraic equations, Report, Dept. de Mathématiques, Université de Genève, 1987.
Additional Information
 © Copyright 1990 American Mathematical Society
 Journal: Math. Comp. 54 (1990), 583625
 MSC: Primary 65L06
 DOI: https://doi.org/10.1090/S00255718199010106008
 MathSciNet review: 1010600