Runge-Kutta methods applied to fully implicit differential-algebraic equations of index $1$
HTML articles powered by AMS MathViewer
- by Anne Kværnø PDF
- Math. Comp. 54 (1990), 583-625 Request permission
Abstract:
In this paper we study the order of Runge-Kutta methods applied to differential-algebraic equations of index one. We derive general order conditions for the local order ${k_L}$, and give a convergence result, which shows that the order ${k_G}$ of the global error satisfies ${k_G} \geq {k_L} - 1$. We also describe some numerical experiments, which are in agreement with our results.References
-
K. E. Brenan and L. R. Petzold, The numerical solution of higher index differential/algebraic equations by implicit Runge-Kutta methods, Preprint, UCRL-95906, Lawrence Livermore National Laboratory, 1986.
- Kevin Burrage and Linda Petzold, On order reduction for Runge-Kutta methods applied to differential/algebraic systems and to stiff systems of ODEs, SIAM J. Numer. Anal. 27 (1990), no. 2, 447–456. MR 1043615, DOI 10.1137/0727027
- J. C. Butcher, The numerical analysis of ordinary differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR 878564
- J. R. Cash, Semi-implicit Runge-Kutta procedures with error estimates for the numerical integration of stiff systems of ordinary differential equations, J. Assoc. Comput. Mach. 23 (1976), no. 3, 455–460. MR 471312, DOI 10.1145/321958.321966
- F. H. Chipman, $A$-stable Runge-Kutta processes, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 384–388. MR 295582, DOI 10.1007/bf01939406
- C. W. Gear, Differential-algebraic equation index transformations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 1, 39–47. MR 922863, DOI 10.1137/0909004
- Ernst Hairer, Christian Lubich, and Michel Roche, The numerical solution of differential-algebraic systems by Runge-Kutta methods, Lecture Notes in Mathematics, vol. 1409, Springer-Verlag, Berlin, 1989. MR 1027594, DOI 10.1007/BFb0093947 B. Leimkuhler, L. R. Petzold, and C. W. Gear, On the consistent initialization of differential-algebraic equations, Dept. of Computer Science, University of Illinois, Urbana, Illinois, 1987. A. Kvaernø, Order conditions for Runge-Kutta methods applied to differential-algebraic systems of index 1, Report No. 4/87, Div. of Numerical Mathematics, The Norwegian Institute of Technology, Norway, 1987.
- Per Lötstedt and Linda Petzold, Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas, Math. Comp. 46 (1986), no. 174, 491–516. MR 829621, DOI 10.1090/S0025-5718-1986-0829621-X S. P. Nørsett, Semi explicit Runge-Kutta methods, Report No. 6/74, Div. of Numerical Mathematics, The Norwegian Institute of Technology, Norway, 1974.
- Syvert P. Nørsett and Per G. Thomsen, Local error control in SDIRK-methods, BIT 26 (1986), no. 1, 100–113. MR 833835, DOI 10.1007/BF01939366
- L. R. Petzold, Order results for implicit Runge-Kutta methods applied to differential/algebraic systems, SIAM J. Numer. Anal. 23 (1986), no. 4, 837–852. MR 849286, DOI 10.1137/0723054
- Michel Roche, Rosenbrock methods for differential algebraic equations, Numer. Math. 52 (1988), no. 1, 45–63. MR 918316, DOI 10.1007/BF01401021 —, Implicit Runge-Kutta methods for differential algebraic equations, Report, Dept. de Mathématiques, Université de Genève, 1987.
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 583-625
- MSC: Primary 65L06
- DOI: https://doi.org/10.1090/S0025-5718-1990-1010600-8
- MathSciNet review: 1010600