Figures of merit for digital multistep pseudorandom numbers
HTML articles powered by AMS MathViewer
- by Debra A. André, Gary L. Mullen and Harald Niederreiter PDF
- Math. Comp. 54 (1990), 737-748 Request permission
Abstract:
The statistical independence properties of s successive digital multistep pseudorandom numbers are governed by the figure of merit ${\rho ^{(s)}}(f)$ which depends on s and the characteristic polynomial f of the recursion used in the generation procedure. We extend previous work for s = 2 and describe how to obtain large figures of merit for $s > 2$, thus arriving at digital multistep pseudorandom numbers with attractive statistical independence properties. Tables of figures of merit for $s = 3,4,5$ and degrees $\leq 32$ are included.References
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414, DOI 10.1090/conm/022
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
- Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, Cambridge University Press, Cambridge, 1986. MR 860948
- G. L. Mullen and H. Niederreiter, Optimal characteristic polynomials for digital multistep pseudorandom numbers, Computing 39 (1987), no. 2, 155–163 (English, with German summary). MR 919665, DOI 10.1007/BF02310104
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI 10.1090/S0002-9904-1978-14532-7
- Harald Niederreiter, The performance of $k$-step pseudorandom number generators under the uniformity test, SIAM J. Sci. Statist. Comput. 5 (1984), no. 4, 798–810. MR 765207, DOI 10.1137/0905057
- Harald Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 195 (1986), no. 1-3, 109–138 (German). MR 881335
- Harald Niederreiter, Rational functions with partial quotients of small degree in their continued fraction expansion, Monatsh. Math. 103 (1987), no. 4, 269–288. MR 897953, DOI 10.1007/BF01318069
- Harald Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), no. 4, 273–337. MR 918037, DOI 10.1007/BF01294651
- Harald Niederreiter, The serial test for digital $k$-step pseudorandom numbers, Math. J. Okayama Univ. 30 (1988), 93–119. MR 976736
- W. Wesley Peterson and E. J. Weldon Jr., Error-correcting codes, 2nd ed., The M.I.T. Press, Cambridge, Mass.-London, 1972. MR 0347444
- Robert C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19 (1965), 201–209. MR 184406, DOI 10.1090/S0025-5718-1965-0184406-1 A. van Wijngaarden, Mathematics and computing, in Proc. Sympos. on Automatic Digital Computation (London, 1954), H. M. Stationery Office, London, 1954, pp. 125-129.
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 737-748
- MSC: Primary 65C10
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011436-4
- MathSciNet review: 1011436