Convergence of the nonconforming Wilson element for a class of nonlinear parabolic problems
Authors:
S. H. Chou and Q. Li
Journal:
Math. Comp. 54 (1990), 509-524
MSC:
Primary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-1990-1011439-X
MathSciNet review:
1011439
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal and
error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the
error on the gradient is of order
.
- [1] Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, https://doi.org/10.1137/0707048
- [2] P. Lesaint and M. Zlámal, Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes, Numer. Math. 36 (1980/81), no. 1, 33–52. MR 595805, https://doi.org/10.1007/BF01395987
- [3] Zhong Ci Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984), no. 3, 349–361. MR 757491, https://doi.org/10.1007/BF01405567
- [4] Shu Min Shen, 𝐿_{∞}-convergence of nonconforming finite element approximations, Math. Numer. Sinica 8 (1986), no. 3, 225–230 (Chinese, with English summary). MR 868028
- [5] H. Wang, Superconvergence of the Wilson element, J. Shandong Univ. 21 (1986), 89-95.
- [6] Mary Fanett Wheeler, A priori 𝐿₂ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, https://doi.org/10.1137/0710062
Retrieve articles in Mathematics of Computation with MSC: 65N30
Retrieve articles in all journals with MSC: 65N30
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1990-1011439-X
Keywords:
Parabolic equation,
Wilson element
Article copyright:
© Copyright 1990
American Mathematical Society