Convergence of the nonconforming Wilson element for a class of nonlinear parabolic problems
HTML articles powered by AMS MathViewer
- by S. H. Chou and Q. Li PDF
- Math. Comp. 54 (1990), 509-524 Request permission
Abstract:
This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal ${H^1}$ and ${L_2}$ error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the ${L_\infty }$ error on the gradient is of order $h\log (1/h)$.References
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- P. Lesaint and M. Zlámal, Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes, Numer. Math. 36 (1980/81), no. 1, 33–52. MR 595805, DOI 10.1007/BF01395987
- Zhong Ci Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984), no. 3, 349–361. MR 757491, DOI 10.1007/BF01405567
- Shu Min Shen, $L_\infty$-convergence of nonconforming finite element approximations, Math. Numer. Sinica 8 (1986), no. 3, 225–230 (Chinese, with English summary). MR 868028 H. Wang, Superconvergence of the Wilson element, J. Shandong Univ. 21 (1986), 89-95.
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 509-524
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011439-X
- MathSciNet review: 1011439