Some new polyhedra with vertex degree $4$ and/or $5$ only
HTML articles powered by AMS MathViewer
- by A. J. W. Duijvestijn and B. Helthuis PDF
- Math. Comp. 54 (1990), 749-753 Request permission
Abstract:
A table of 4- and 5-hedra of orders up to and including 22 is given.References
- R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312–340. MR 3040
- Adrianus Johannes Wilhelmus Duijvestijn, Electronic computation of squared rectangles, Technische Hogeschool Eindhoven, Eindhoven, 1962. Thesis; Technische Wetenschap aan de Technische Hogeschool te Eindhoven. MR 0144492
- A. J. W. Duijvestijn, Simple perfect squared square of lowest order, J. Combin. Theory Ser. B 25 (1978), no. 2, 240–243. MR 511994, DOI 10.1016/0095-8956(78)90041-2 —, Algorithmic calculation of the order of the automorphism group of a graph, Memorandum no. 221, University of Technology Twente, Enschede, The Netherlands, 1978.
- A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral ($3$-connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523–532. MR 628713, DOI 10.1090/S0025-5718-1981-0628713-3
- W. T. Tutte, A theory of $3$-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441–455. MR 0140094
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 749-753
- MSC: Primary 68R10; Secondary 05C99
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011441-8
- MathSciNet review: 1011441