Lattice rules: projection regularity and unique representations
Authors:
I. H. Sloan and J. N. Lyness
Journal:
Math. Comp. 54 (1990), 649-660
MSC:
Primary 65D32
DOI:
https://doi.org/10.1090/S0025-5718-1990-1011443-1
MathSciNet review:
1011443
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce a unique characterization for lattice rules which are projection regular. Any such rule, having invariants ${n_1},{n_2}, \ldots ,{n_s}$, may be expressed, uniquely, in the form \[ Qf = \frac {1}{{{n_1}{n_2} \cdots {n_s}}}\sum {\sum \cdots \sum {\bar f} \left ( {\frac {{{j_1}{{\mathbf {z}}_1}}}{{{n_1}}} + \frac {{{j_2}{{\mathbf {z}}_2}}}{{{n_2}}} + \cdots + \frac {{{j_s}{{\mathbf {z}}_s}}}{{{n_s}}}} \right )} ,\] where the matrix $Z = {({{\mathbf {z}}_1},{{\mathbf {z}}_2}, \ldots ,{{\mathbf {z}}_s})^T}$ is upper unit triangular and individual elements satisfy $0 \leq z_r^{(c)} < ({n_r}/{n_c}),r < c$.
- J. N. Lyness and I. H. Sloan, Some properties of rank-$2$ lattice rules, Math. Comp. 53 (1989), no. 188, 627–637. MR 982369, DOI https://doi.org/10.1090/S0025-5718-1989-0982369-6
- Dominique Maisonneuve, Recherche et utilisation des “bons treillis”. Programmation et résultats numériques, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121–201 (French, with English summary). MR 0343529
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI https://doi.org/10.1090/S0002-9904-1978-14532-7
- Ian H. Sloan, Lattice methods for multiple integration, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 131–143. MR 793949, DOI https://doi.org/10.1016/0377-0427%2885%2990012-3
- Ian H. Sloan and Philip J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), no. 1, 116–128. MR 874739, DOI https://doi.org/10.1137/0724010
- Ian H. Sloan and James N. Lyness, The representation of lattice quadrature rules as multiple sums, Math. Comp. 52 (1989), no. 185, 81–94. MR 947468, DOI https://doi.org/10.1090/S0025-5718-1989-0947468-3
- S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
Retrieve articles in Mathematics of Computation with MSC: 65D32
Retrieve articles in all journals with MSC: 65D32
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society