Lattice rules: projection regularity and unique representations
HTML articles powered by AMS MathViewer
- by I. H. Sloan and J. N. Lyness PDF
- Math. Comp. 54 (1990), 649-660 Request permission
Abstract:
We introduce a unique characterization for lattice rules which are projection regular. Any such rule, having invariants ${n_1},{n_2}, \ldots ,{n_s}$, may be expressed, uniquely, in the form \[ Qf = \frac {1}{{{n_1}{n_2} \cdots {n_s}}}\sum {\sum \cdots \sum {\bar f} \left ( {\frac {{{j_1}{{\mathbf {z}}_1}}}{{{n_1}}} + \frac {{{j_2}{{\mathbf {z}}_2}}}{{{n_2}}} + \cdots + \frac {{{j_s}{{\mathbf {z}}_s}}}{{{n_s}}}} \right )} ,\] where the matrix $Z = {({{\mathbf {z}}_1},{{\mathbf {z}}_2}, \ldots ,{{\mathbf {z}}_s})^T}$ is upper unit triangular and individual elements satisfy $0 \leq z_r^{(c)} < ({n_r}/{n_c}),r < c$.References
- J. N. Lyness and I. H. Sloan, Some properties of rank-$2$ lattice rules, Math. Comp. 53 (1989), no. 188, 627–637. MR 982369, DOI 10.1090/S0025-5718-1989-0982369-6
- Dominique Maisonneuve, Recherche et utilisation des “bons treillis”. Programmation et résultats numériques, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121–201 (French, with English summary). MR 0343529
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI 10.1090/S0002-9904-1978-14532-7
- Ian H. Sloan, Lattice methods for multiple integration, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 131–143. MR 793949, DOI 10.1016/0377-0427(85)90012-3
- Ian H. Sloan and Philip J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), no. 1, 116–128. MR 874739, DOI 10.1137/0724010
- Ian H. Sloan and James N. Lyness, The representation of lattice quadrature rules as multiple sums, Math. Comp. 52 (1989), no. 185, 81–94. MR 947468, DOI 10.1090/S0025-5718-1989-0947468-3
- S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 649-660
- MSC: Primary 65D32
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011443-1
- MathSciNet review: 1011443