Rigorous sensitivity analysis for systems of linear and nonlinear equations
HTML articles powered by AMS MathViewer
 by Siegfried M. Rump PDF
 Math. Comp. 54 (1990), 721736 Request permission
Abstract:
Methods are presented for performing a rigorous sensitivity analysis of numerical problems with independent, noncorrelated data for general systems of linear and nonlinear equations. The methods may serve for the following two purposes. First, to bound the dependency of the solution on changes in the input data. In contrast to condition numbers, a componentwise sensitivity analysis of the solution vector is performed. Second, to estimate the true solution set for problems whose input data are subject to tolerances. The methods presented are very effective and have the additional property that, owing to an automatic error control mechanism, every computed result is guaranteed to be correct. Examples are given for linear systems, demonstrating that the computed bounds are in general very sharp. Interesting comparisons to traditional condition numbers are given.References

ACRITH, HighAccuracy Arithmetic Subroutine Library, Program Description and User’s Guide, IBM Publications, Document Number SC 3361643, 1986.
 Götz Alefeld and Jürgen Herzberger, Introduction to interval computations, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Translated from the German by Jon Rokne. MR 733988
 H. Bauch, K.U. Jahn, D. Oelschlägel, H. Süsse, and V. Wiebigke, Intervallmathematik, MathematischNaturwissenschaftliche Bibliothek [MathematicalScientific Library], vol. 72, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987 (German). Theorie und Anwendungen. [Theory and applications]. MR 927085
 Walter Baur and Volker Strassen, The complexity of partial derivatives, Theoret. Comput. Sci. 22 (1983), no. 3, 317–330. MR 693063, DOI 10.1016/03043975(83)90110X IEEE 754 Standard for FloatingPoint Arithmetic, 1986. W. Kahan and E. LeBlanc, Anomalies in the IBM ACRITH package, Proc. 7th Sympos. on Computer Arithmetic (Kai Hwang, ed.), Urbana, Illinois, 1985.
 R. Krawczyk, NewtonAlgorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing (Arch. Elektron. Rechnen) 4 (1969), 187–201 (German, with English summary). MR 255046, DOI 10.1007/bf02234767
 R. Krawczyk and A. Neumaier, Interval slopes for rational functions and associated centered forms, SIAM J. Numer. Anal. 22 (1985), no. 3, 604–616. MR 787580, DOI 10.1137/0722037
 Ulrich Kulisch, Grundlagen des numerischen Rechnens, Mathematische Begründung der Rechnerarithmetik. Reihe Informatik, Band 19, Bibliographisches Institut, MannheimViennaZurich, 1976 (German). MR 0426403
 Ulrich W. Kulisch and Willard L. Miranker, Computer arithmetic in theory and practice, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1981. MR 606741 —, (eds.), A new approach to scientific computation, Academic Press, New York, 1981.
 Ramon E. Moore, Interval analysis, PrenticeHall, Inc., Englewood Cliffs, N.J., 1966. MR 0231516
 R. E. Moore, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal. 14 (1977), no. 4, 611–615. MR 657002, DOI 10.1137/0714040 —, Methods and applications of interval analysis, SIAM, Philadelphia, 1979.
 A. Neumaier, Overestimation in linear interval equations, SIAM J. Numer. Anal. 24 (1987), no. 1, 207–214. MR 874746, DOI 10.1137/0724017
 Arnold Neumaier, Rigorous sensitivity analysis for parameterdependent systems of equations, J. Math. Anal. Appl. 144 (1989), no. 1, 16–25 (English, with German summary). MR 1022559, DOI 10.1016/0022247X(89)903570 L. B. Rall, Automatic differentiation: Techniques and applications. Lecture Notes in Computer Science, no. 120, SpringerVerlag, Berlin, Heidelberg, and New York, 1981. S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach to Scientific Computation (U. Kulisch and W. L. Miranker, eds.), Academic Press, New York, 1981, pp. 51120.
 S. M. Rump, Solving nonlinear systems with least significant bit accuracy, Computing 29 (1982), no. 3, 183–200 (English, with German summary). MR 680469, DOI 10.1007/BF02241697
 Siegfried M. Rump, New results on verified inclusions, Accurate scientific computations (Bad Neuenahr, 1985) Lecture Notes in Comput. Sci., vol. 235, Springer, Berlin, 1986, pp. 31–69. MR 868284, DOI 10.1007/3540167986_{4} B. Speelpennig, Compiling fast partial derivatives of functions given by algorithms, Ph. D. thesis, University of Illinois, Urbana, Illinois, 1980. P. Wongwises, Experimentelle Untersuchungen zur numerischen Auflösung von linearen Gleichungssystemen mit Fehlererfassung, Interner Bericht 75/1, Institut für Praktische Mathematik, Universität Karlsruhe, 1975.
Additional Information
 © Copyright 1990 American Mathematical Society
 Journal: Math. Comp. 54 (1990), 721736
 MSC: Primary 65G10; Secondary 65G05, 65H10
 DOI: https://doi.org/10.1090/S00255718199010114455
 MathSciNet review: 1011445