Finite element interpolation of nonsmooth functions satisfying boundary conditions
HTML articles powered by AMS MathViewer
- by L. Ridgway Scott and Shangyou Zhang PDF
- Math. Comp. 54 (1990), 483-493 Request permission
Abstract:
In this paper, we propose a modified Lagrange type interpolation operator to approximate functions in Sobolev spaces by continuous piecewise polynomials. In order to define interpolators for "rough" functions and to preserve piecewise polynomial boundary conditions, the approximated functions are averaged appropriately either on d- or $(d - 1)$-simplices to generate nodal values for the interpolation operator. This combination of averaging and interpolation is shown to be a projection, and optimal error estimates are proved for the projection error.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 2, 169–192 (1989). MR 1007396
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7 J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. P. Saavedra and L. R. Scott, A variational formulation of free boundary problems, submitted to Math. Comp. S. Zhang, Multi-level iterative techniques, thesis, Pennsylvania State University, 1988.
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 483-493
- MSC: Primary 65D05; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011446-7
- MathSciNet review: 1011446