PARALLEL MULTILEVEL PRECONDITIONERS

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND JINCHAO XU

Abstract. In this paper, we provide techniques for the development and analysis of parallel multilevel preconditioners for the discrete systems which arise in numerical approximation of symmetric elliptic boundary value problems. These preconditioners are defined as a sum of independent operators on a sequence of nested subspaces of the full approximation space. On a parallel computer, the evaluation of these operators and hence of the preconditioner on a given function can be computed concurrently.

We shall study this new technique for developing preconditioners first in an abstract setting, next by considering applications to second-order elliptic problems, and finally by providing numerically computed condition numbers for the resulting preconditioned systems. The abstract theory gives estimates on the condition number in terms of three assumptions. These assumptions can be verified for quasi-uniform as well as refined meshes in any number of dimensions. Numerical results for the condition number of the preconditioned systems are provided for the new algorithms and compared with other well-known multilevel approaches.

1. Introduction

We shall provide some new techniques for the development and analysis of preconditioners for the discrete systems which arise in approximation to the solutions of elliptic boundary value problems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two- and three-dimensional Euclidean space (cf. [3] and the included references). The use of preconditioned iteration will become even more important on computers with parallel architecture.

This paper provides an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem. Let \( \Omega \) be a polygonal domain in \( \mathbb{R}^2 \) and consider the problem of approximating the
solution $u$ of

$$\begin{align*}
Lu &= f \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{align*}$$

where

$$Lu = -\sum_{i, j=1}^{2} \frac{\partial}{\partial x_i} a_{ij} \frac{\partial u}{\partial x_j} + au.$$  

We assume that the matrix $\{a_{ij}(x)\}$ is symmetric and uniformly positive definite and $a(x) \geq 0$ in $\Omega$.

We first define a sequence of multilevel finite element spaces in the usual way. Since $\Omega$ is polygonal, we can define a 'coarse' triangulation $\tau_1 = \bigcup_t \tau_1^t$, where $\tau_1^t$ represents an individual triangle and $\tau_1$ denotes the triangulation. Successively finer triangulations $\{\tau_k, k = 2, \ldots, J\}$ are defined by breaking each triangle of a coarser triangulation into four triangles by connecting the midpoints of the edges. The subspace $\mathbb{M}_k$ is defined to be the continuous functions defined on $\Omega$ which are piecewise linear with respect to $\tau_k$ and vanish on $\partial \Omega$. We shall be interested in developing a preconditioner for the solution of the Galerkin equations on the $J$th subspace, i.e., $U \in \mathbb{M}_J$ satisfying

$$A(U, \phi) = (f, \phi) \quad \text{for all } \phi \in \mathbb{M}_J.$$  

Here $A(\cdot, \cdot)$ denotes the generalized Dirichlet integral defined by

$$A(u, v) = \sum_{i, j=1}^{2} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} \, dx + \int_{\Omega} auv \, dx$$

and $(\cdot, \cdot)$ denotes the $L^2$ inner product on $\Omega$.

Let $\{\phi_k^l\}$ denote the usual nodal basis for the subspace $\mathbb{M}_k$, i.e., the $l$th basis function is one on the $l$th node of the $k$th triangulation and vanishes on all others. The preconditioner $\mathcal{B}$ is defined by

$$\mathcal{B}v = \sum_{k=1}^{J} \sum_{l} (v, \phi_k^l) \phi_k^l.$$  

The above preconditioner is simply a double sum, the terms of which can be computed concurrently. This results in an inherently parallel algorithm.

As is well-known, the rate of convergence of an iterative method can be estimated in terms of the condition number of the preconditioned system. We provide a theory for the estimation of the condition number for this type of multilevel preconditioner in terms of a number of a priori assumptions. In the above example, this theory can be used to show that the relevant condition number is at worst $O(J^2)$. Moreover, these results hold for problems in two, three, and higher dimensions as well as problems with only locally quasi-uniform mesh approximation.
We note that many alternative preconditioning techniques have been proposed for such discrete systems. For example, domain decomposition preconditioners have been developed ([5], [6], [7], [8], [13], and the included references). These domain decomposition preconditioners are inherently parallel, however become somewhat complex in three-dimensional applications. Alternatively, multigrid [4], [9], [14], [17] and hierarchical multigrid [2], [20] techniques give rise to different multilevel preconditioners. The standard multigrid algorithms do not allow for completely parallel computations, since the computations on a given level use results from the previous levels. Theoretical results for the usual multigrid algorithms are available, in general, for problems in any number of spatial dimensions but only for quasi-uniform mesh approximation. Good results hold for the hierarchical basis method in two dimensions with refined meshes but degenerate when applied to three-dimensional problems. Finally, preconditioners based on approximate LU factorization are often proposed; however, a comprehensive theory is yet to be developed [11], [12], [18].

The outline of the remainder of the paper is as follows. A general abstract theory for the development and analysis of parallel multilevel preconditioners is given in §2. In §3, this theory is applied to second-order elliptic boundary value problems, and the serial and parallel complexity of the resulting algorithms is discussed. We apply the abstract theory to a second-order problem with a locally refined mesh in §4. Finally, the results of numerical experiments illustrating the theory of the earlier sections are given in §5.

2. General theory

In this section, we develop a general theory for the construction of parallel multilevel preconditioners. This theory is presented in an abstract setting to most clearly illustrate the relevant analytic techniques and assumptions. The development of this class of preconditioners is based on a certain orthogonal decomposition of the approximation space. The parallel multilevel preconditioners are then abstractly defined in terms of this decomposition by the replacement of orthogonal projections by more computationally efficient operators. Applications to second-order elliptic boundary value problems are given in §§3 and 4.

We start with the basic abstract framework. We assume that we are given a nested sequence of finite-dimensional spaces,

\[ M_1 \subset M_2 \subset \cdots \subset M_J = M, \quad J \geq 2. \]

The space \( M \) and hence all of its subspaces are equipped with two inner products \((\cdot, \cdot)\) and \( A(\cdot, \cdot)\). The first part of this section will consider properties of a certain orthogonal decomposition of \( M \) with respect to the inner product \((\cdot, \cdot)\) and the sequence of spaces (2.1). We shall investigate the spectral properties of these spaces with respect to the form \( A(\cdot, \cdot)\) since, ultimately, we are interested in computing the solution to the Galerkin equations: Given \( f \in M \),
find $u \in \mathcal{M}$ satisfying

$$A(u, v) = (f, v) \quad \text{for all } v \in \mathcal{M}. \quad (2.2)$$

We shall use the following notation in the development and analysis. For each $k = 1, \ldots, J$, we introduce the following operators:

1. The projection $P_k : \mathcal{M} \rightarrow \mathcal{M}_k$ is defined for $u \in \mathcal{M}$ by
   $$A(P_k u, v) = A(u, v) \quad \text{for all } v \in \mathcal{M}_k.$$

2. The projection $Q_k : \mathcal{M} \rightarrow \mathcal{M}_k$ is defined for $u \in \mathcal{M}$ by
   $$Q_k u, v) = (u, v) \quad \text{for all } v \in \mathcal{M}_k.$$

3. The operator $A_k : \mathcal{M}_k \rightarrow \mathcal{M}_k$ is defined for $u \in \mathcal{M}_k$ by
   $$(A_k u, v) = A(u, v) \quad \text{for all } v \in \mathcal{M}_k.$$ We shall also denote $\mathcal{M} = A_3$ and define

$$\mathcal{O}_k = \{ \phi \mid \phi = (Q_k - Q_{k-1}) \psi, \psi \in \mathcal{M} \},$$

where $Q_0 = 0$. We shall study the spectral properties of $A$ with respect to the decomposition

$$\mathcal{M} = \mathcal{O}_1 + \cdots + \mathcal{O}_J. \quad (2.3)$$

It follows from the above definitions that

$$Q_k A = A_k P_k,$$

$$(Q_k Q_l = Q_l Q_k = Q_l \quad \text{for } l \leq k. \quad (2.4)$$

From the second equation of (2.4), it follows that

$$(Q_k - Q_{k-1})(Q_l - Q_{l-1}) = 0$$

if $k \neq l$, and hence the decomposition (2.3) is orthogonal, i.e., $(u, v) = 0$ whenever $u \in \mathcal{O}_l, v \in \mathcal{O}_k$ with $l \neq k$.

We consider first the operator

$$B = \sum_{k=1}^{J} \lambda_k^{-1}(Q_k - Q_{k-1}), \quad (2.5)$$

where $\lambda_k$ denotes the spectral radius of $A_k$. Clearly, $B$ is symmetric and positive definite, and

$$A(BAv, v) = \sum_{k=1}^{J} \lambda_k^{-1} \left\| (Q_k - Q_{k-1}) Av \right\|^2, \quad (2.6)$$

where $\| \cdot \|^2 = (\cdot, \cdot)$. Note that $B$ is block diagonal with respect to the decomposition (2.3) and each diagonal block is a multiple of the identity matrix.

The operator $B$ may be thought of as an “approximate inverse” for $A$. Thus, we shall be interested in estimating the condition number $K(BA)$ of $BA$. We note that $K(BA) \leq c_1/c_0$ for any positive constants $c_0, c_1$ satisfying

$$c_0 A(v, v) \leq A(BAv, v) \leq c_1 A(v, v) \quad \text{for all } v \in \mathcal{M}. \quad (2.7)$$
Remark 2.1. The form of the operator $B$ can be motivated by the spectral decomposition of the operator $A$. Indeed, for a special example, namely, $M_k$ the space spanned by the eigenvectors corresponding to the smallest $k$ distinct eigenvalues of $A$, the operator $B$ defined by (2.5) is in fact equal to $A^{-1}$.

In general, we can see that

$$ (2.8) \quad A(BAv, v) \leq JA(v, v) \quad \text{for all } v \in M. $$

Indeed, by (2.4), (2.6) and the definition of $\lambda_k$,

$$ A(BAv, v) \leq \sum_{k=1}^{J} \lambda_k^{-1} \|Q_k Av\|^2 \leq \sum_{k=1}^{J} A(P_k v, P_k v). $$

Inequality (2.8) follows from the fact that $P_k$ is a bounded operator with operator norm one in the norm induced by the $A(\cdot, \cdot)$ inner product.

The lower estimate of (2.7) will require some hypotheses concerning the spaces $M_k$. We first consider the following assumptions on the operators $Q_k$:

For $k = 1, \ldots, J$, there exists a constant $C_k > 0$ such that

$$ (A.1) \quad \| (I - Q_{k-1}) v \|^2 \leq C_k \lambda_k^{-1} A(v, v) \quad \text{for all } v \in M. $$

We can now prove the following theorem.

**Theorem 1.** Assume that (A.1) holds. Then

$$ (2.9) \quad C_1^{-1} J^{-1} A(v, v) \leq A(BAv, v) \leq JA(v, v) \quad \text{for all } v \in M. $$

**Proof.** By (2.8), we need only prove the first inequality of (2.9). We note that

$$ A(v, v) = \sum_{k=1}^{J} A((Q_k - Q_{k-1}) v, v) $$

$$ = \sum_{k=1}^{J} ((I - Q_{k-1}) v, (Q_k - Q_{k-1}) Av). $$

By the Schwarz inequality and (A.1), it follows that

$$ A(v, v) \leq C_1^{-1/2} \sum_{k=1}^{J} A(v, v)^{1/2} \lambda_k^{-1/2} \| (Q_k - Q_{k-1}) Av \|. $$

Applying the Schwarz inequality to the sum gives

$$ A(v, v)^{1/2} \leq C_1^{1/2} J^{1/2} A(BAv, v)^{1/2}, $$

which is the lower inequality of (2.9).

**Corollary 1.** For any real $s$,

$$ (2.10) \quad B^s = \sum_{k=1}^{J} \lambda_k^{-s} (Q_k - Q_{k-1}). $$
Moreover, for any \( s \in [0, 1] \).

\[
J^{-s}(A^s v, v) \leq (B^{-s} v, v) \leq (C_1 J)^s (A^s v, v) \quad \text{for all } v \in \mathcal{M}.
\]

**Proof.** The orthogonality of the decomposition (2.3) immediately implies (2.10). Clearly, \( B^s \) and \( A^s \) are Hilbert scales. By interpolation, it suffices to verify (2.11) for \( s = 0 \) and \( s = 1 \). The case \( s = 0 \) is trivial and \( s = 1 \) is given by Theorem 1.

We have included Corollary 1 for the purpose of future applications which will not be described in this paper. In particular, it will be used for the development of preconditioners for certain boundary operators which arise in domain decomposition techniques for second-order boundary value problems [10].

In the next corollary, we consider the case of the sum of two operators. Let \( \hat{A}(\cdot, \cdot) \) be another symmetric positive definite form and let \( \hat{A}, \{\hat{A}_k\} \) and \( \{\hat{\lambda}_k\} \) be defined analogously in terms of \( \hat{A}(\cdot, \cdot) \). Consider the operator \( \hat{B} : \mathcal{M} \rightarrow \mathcal{M} \) defined by

\[
\hat{B} = \sum_{k=1}^{J} (\hat{\lambda}_k + \hat{\lambda}_k^{-1})^{-1} (Q_k - Q_{k-1}).
\]

Theorem 1 immediately implies the following corollary.

**Corollary 2.** Assume that (A.1) holds for both \( A \) and \( \hat{A} \). Then,

\[
J^{-1}((A + \hat{A}) v, v) \leq (B^{-1} v, v) \leq C_1 J((A + \hat{A}) v, v) \quad \text{for all } v \in \mathcal{M}.
\]

**Proof.** A change of variable shows that (2.9) is equivalent to

\[
J^{-1}(A v, v) \leq (B^{-1} v, v) \leq C_1 J(A v, v) \quad \text{for all } v \in \mathcal{M}.
\]

Corollary 2 follows adding this and the analogous inequality involving \( \hat{A} \).

The most natural application of the above corollary is to the discrete systems which arise in parabolic time-stepping algorithms. At each time level, a function \( U^n \in \mathcal{M} \) satisfying

\[
(I + \tau A)U^n = F^n,
\]

with known \( F^n \in \mathcal{M} \) must be computed. Here \( \tau \) is a positive number which is related to the time step size. We shall not consider further application of Corollary 2 in this paper.

We next apply the above results to analyze parallel multilevel preconditioners for \( A \). An operator \( \mathcal{B} : \mathcal{M} \rightarrow \mathcal{M} \) is a good preconditioner for \( A \) if it satisfies:

1. The action of \( \mathcal{B} \) on vectors of \( \mathcal{M} \) is economical to compute.
2. The condition number \( K(\mathcal{B} A) \) of the preconditioned system is not too large.

Item (1) above guarantees that the cost per iteration in a preconditioned scheme using \( \mathcal{B} \) for solving (2.2) will not be unreasonable. Item (2) guarantees that the number of iterations in a preconditioned scheme will not be too large. Note that by Theorem 1, \( B \) satisfies (2). \( \mathcal{B} \) may in fact satisfy (1) in many applications.
but generally it is desirable to avoid evaluating the action of \( Q_k \). Hence we shall develop more computationally effective algorithms by modifying (2.5).

To get a computationally effective preconditioner, we write (2.5) in the form

\[
B = \sum_{k=1}^{J-1} (\lambda_k^{-1} - \lambda_{k+1}^{-1})Q_k + \lambda_f^{-1}I.
\]

Notice that if \( \{\lambda_k\}_{k=1}^J \) satisfies the growth condition \( \lambda_{k+1} \geq \sigma \lambda_k \) for \( \sigma > 1 \), then the operator

\[
\hat{B} = \sum_{k=1}^{J} \lambda_k^{-1}Q_k
\]

satisfies

\[
(1 - \sigma^{-1})(\hat{B}u, u) \leq (Bu, u) \leq (\hat{B}u, u) \quad \text{for all } u \in \mathcal{M}.
\]

We consider a slightly more general operator defined by replacing \( \lambda_k^{-1}I \) in (2.12) with a symmetric positive definite operator \( R_k : \mathcal{M}_k \rightarrow \mathcal{M}_k \), i.e.,

\[
\mathcal{B} = \sum_{k=1}^{J} R_k Q_k.
\]

Clearly, \( \mathcal{B} \) is symmetric and positive definite on \( \mathcal{M} \). The cost of evaluating the action of the preconditioner \( \mathcal{B} \) on a vector in \( \mathcal{M} \) will be discussed in later sections but will obviously depend on an appropriate choice of \( R_k \).

For our subsequent analysis, we shall need to make the following assumption concerning the operator \( R_k \). We assume that

\[
\|u\|_{\lambda_k}^2 \leq (R_k u, u) \leq C_3 (A_k^{-1} u, u) \quad \text{for all } u \in \mathcal{M}_k,
\]

where \( C_2 \) and \( C_3 \) are positive constants not depending on \( J \). Clearly, the choice \( R_k = \lambda_k^{-1}I \) corresponding to (2.12) satisfies (A.2).

The preconditioner (2.13) can be thought of as a parallel version of a V-cycle multigrid algorithm. The operator \( R_k \) plays the role of a smoothing procedure. The major difference between (2.13) and the V-cycle multigrid scheme is that the smoothing on every level of (2.13) is applied to the original fine grid residual. In contrast, the multigrid V-cycle applies the smoothing to the residual computed using the corrections from the previously visited grid. Obviously, the different terms in (2.13) can be computed in parallel while, in contrast, computations on a given grid level in a standard multigrid algorithm must wait for the results from previous levels. The connection between (2.13) and the multigrid V-cycle will be more fully discussed in §3. However, it is not surprising that assumptions which are equivalent to (A.2) have been made in the analysis of the usual serial multigrid algorithms [4], [9], [15], [16].

Remark 2.2. A particularly interesting choice of \( R_k \) can be motivated as follows. As noted above, \( R_k = \lambda_k^{-1}I \) satisfies (A.2). Let \( \{\psi_k^j\} \) be an orthonormal
basis for $\mathcal{M}_k$. Then
\begin{equation}
\lambda_k^{-1} u = \sum_j (u, \psi_k^j) \psi_k^j \quad \text{for all } u \in \mathcal{M}_k.
\end{equation}

In practice, an orthonormal basis for $\mathcal{M}_k$ is seldom available. However, for finite element applications with quasi-uniform grids, the right-hand side of (2.14) with normalized nodal basis functions $\{\psi_k^j\}$ defines an $R_k$ satisfying (A.2) (see §3). Moreover, we note that for $u \in \mathcal{M}$,
\[ R_k Q_k u = \lambda_k^{-1} \sum_j (u, \psi_k^j) \psi_k^j, \]
and hence $R_k Q_k$ is computable without the solution of Gram matrix systems. This will be discussed in more detail in §3.

With $\mathcal{B}$ defined in (2.13), we have the following corollary.

**Corollary 3.** Under assumptions (A.1) and (A.2),
\begin{equation}
C_1^{-1} C_2 J^{-1} A(v, v) \leq A(BA v, v) \leq C_3 J A(v, v) \quad \text{for all } v \in \mathcal{M}.
\end{equation}

**Proof.** By (A.2), for $v \in \mathcal{M}$,
\begin{equation}
A(BA v, v) = \sum_{k=1}^{J} (R_k A_k P_k v, A_k P_k v) \leq C_3 \sum_{k=1}^{J} A(P_k v, P_k v),
\end{equation}
from which the second inequality of (2.15) follows. For the first inequality, by Theorem 1 and (A.2),
\[ C_1^{-1} J^{-1} A(v, v) \leq A(BA v, v) \leq \sum_{k=1}^{J} \lambda_k^{-1} \|Q_k A v\|^2 \leq C_2^{-1} A(BA v, v). \]
This completes the proof of the corollary.

We next provide an alternative hypothesis for a lower estimate in (2.15). This is the so-called “regularity and approximation” assumption often used in multigrid analysis (cf. [4], [14], [17]). We assume that for a fixed $\alpha \in (0, 1]$, there exists a positive constant $C_4$ not depending on $k = 1, \ldots, J$ satisfying
\begin{equation}
A((I - P_{k-1}) v, v) \leq (C_4 \lambda_k^{-1} \|A_k v\|^2)^\alpha A(v, v)^{1-\alpha} \quad \text{for all } v \in \mathcal{M}_k,
\end{equation}
where $P_0 = 0$. In finite element applications, the above assumption is usually proved by using elliptic regularity for the continuous problem and the approximation properties of the space $\mathcal{M}_{k-1}$ [1], [4]. In such applications, assumption (A.3) may be stronger than (A.1), e.g., when $\alpha = 1$, (A.3) implies (A.1). We can now prove the following theorem.
Theorem 2. Assume that (A.2) and (A.3) hold. Then

\[
C_2 C_4^{-1} J^{1-1/\alpha} A(v, v) \leq A(\mathcal{B} Av, v) \leq C_3 J A(v, v) \quad \text{for all } v \in M.
\]

Proof. We need only prove the first inequality in (2.17). Writing

\[ v = \sum_{k=1}^{J} (P_k - P_{k-1})v, \]

and using the properties of \( P_k \) and (A.3), gives

\[
A(v, v) = \sum_{k=1}^{J} A((I - P_{k-1}) P_k v, P_k v) \leq C_4^\alpha \sum_{k=1}^{J} (\lambda_k^{-1} \|A_k P_k v\|^2) A(v, v)^{1-\alpha}.
\]

By (A.2),

\[
A(v, v) \leq (C_2^{-1} C_4)^\alpha \sum_{k=1}^{J} (R_k A_k P_k v, A_k P_k v)^{\alpha} (Av, v)^{1-\alpha}.
\]

By Hölder's inequality, for a sequence of nonnegative numbers \( \{b_k\} \), we clearly have

\[
\sum_{k=1}^{J} b_k^\alpha \leq J^{1-\alpha} \left( \sum_{k=1}^{J} b_k \right)^\alpha,
\]

from which it follows that

\[
A(v, v)^\alpha \leq (C_2^{-1} C_4)^\alpha J^{1-\alpha} \left( \sum_{k=1}^{J} (R_k A_k P_k v, A_k P_k v) \right)^\alpha \leq (C_2^{-1} C_4)^\alpha J^{1-\alpha} A(\mathcal{B} Av, v)^\alpha.
\]

The first inequality of (2.17) follows from (2.18) in an obvious manner. This completes the proof of Theorem 2.

Remark 2.3. Included in (A.1) and (A.3) is the implicit assumption that \( C_1 \) and \( C_4 \) are greater than or equal to \( K(A_1) \). In finite element applications, \( K(A_1) \) will not be large if the grid size of the coarsest grid is of unit size. However, if a good preconditioner \( R_j \) is available for any finer grid, i.e., \( R_j \) satisfies in addition

\[
(R_j^{-1} u, u) \leq C_5 (A_j u, u),
\]

then it suffices to use

\[
\mathcal{B} = \sum_{k=j}^{J} R_k Q_k.
\]
In such applications, (A.1) or (A.3) need only be satisfied for \( k > j \). Note that \( R_j = A_j^{-1} \) will be effective provided that the \( j \)th grid size is relatively small. Many alternative choices are possible.

3. The quasi-uniform application

In this section, we shall illustrate the application of the abstract theory and algorithms discussed in the previous section to a second-order elliptic boundary value problem approximated using finite element functions on a quasi-uniform mesh. We first show that the hypotheses of the previous section are satisfied. We also consider the computational complexity of the resulting algorithm in both serial and parallel computing applications. For brevity, we consider only the most basic finite element applications. Many other applications are possible, including examples of elliptic problems in higher dimensions.

Let \( \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_J = \mathcal{M} \) be the finite element spaces defined in the introduction subsequent to (1.1), \( A(\cdot, \cdot) \) be the generalized Dirichlet form defined in (1.3) and \( (\cdot, \cdot) \) be the \( L^2 \) inner product on \( \Omega \).

We will apply the results of §2 to Problem (1.2) with the above sequence of spaces. Let \( h_k \) denote the size of the \( k \)th triangulation. It easily follows that there are constants \( c_0 \) and \( c_1 \), not depending on \( k \) and satisfying

\[
(3.1) \quad c_0 h_k^{-2} \leq \lambda_k \leq c_1 h_k^{-2}.
\]

Inequality (A.1) with \( k = 2 \) is well-known. For \( k = 1 \), we have that

\[
\|u\|^2 \leq \Lambda^{-1} A(u, u) \quad \text{for all } u \in \mathcal{M},
\]

where \( \Lambda \) is the smallest eigenvalue of \( A \) and is obviously bounded away from zero (independently of \( J \)). We shall suppose in this application that \( h_x \) is such that \( h_x \) is proportional to the diameter of \( \Omega \), so that \( C_1 \geq \lambda_1 / \Lambda \), which is not large.

We next consider the operator \( R_k \) motivated by Remark 2.2, i.e.,

\[
(3.2) \quad R_k u = \sum_l (u, \phi_k^l) \phi_k^l \quad \text{for } u \in \mathcal{M}_k,
\]

where the sum is taken over all nodes of \( \tau_k \). As observed in Remark 2.2, the action of \( R_k Q_k \) can be computed without explicitly computing \( Q_k \). Moreover, using \( R_k \) defined by (3.2) in (2.13) leads to the preconditioner of (1.4).

We now show that (A.2) holds for this \( R_k \). Any \( u \in \mathcal{M}_k \) may be represented by

\[
(3.3) \quad u = \sum_l \alpha_l \phi_k^l,
\]

where \( \alpha_l \) is the value of \( u \) at the \( l \)th node of \( \tau_k \). Let \( \vec{\alpha} \) denote the corresponding vector with entries \( \{\alpha_l\} \), \( G_k \) denote the matrix with entries \( (G_k)_{lm} = (\phi_k^l, \phi_k^m) \) and \( (\cdot, \cdot) \) denote the Euclidean inner product. Note that

\[
(3.4) \quad (R_k u, u) = \sum_l (u, \phi_k^l)^2 = \langle G_k \vec{\alpha}, G_k \vec{\alpha} \rangle.
\]
By the quasi-uniformity of $\tau_k$, $h_k^2 \sum_l \alpha_l^2$ is a norm which is equivalent to $\|u\|^2 = \langle G_k \tilde{\alpha}, \tilde{\alpha} \rangle$. This equivalence is uniform with respect to $k$. It immediately follows that $\langle G_k \tilde{\alpha}, G_k \tilde{\alpha} \rangle$ is uniformly equivalent to $h_k^4 \langle \tilde{\alpha}, \tilde{\alpha} \rangle$. Thus, by (3.1),

$$c_0 \|u\|_{\lambda_k}^2 \leq (R_k \alpha, u) \leq c_1 \|u\|_{\lambda_k}^2 \quad \text{for all } u \in \mathcal{M}_k,$$

with $c_0$ and $c_1$ independent of $k$. Assumption (A.2) follows immediately from the definition of $\lambda_k$.

For this problem, (A.3) will always be satisfied for some $\alpha \in (0, 1]$ (cf. for example, [1], [4]). The size of $\alpha$ depends on the elliptic regularity of Problem (1.1). Thus, in the case when $\Omega$ is a convex polygonal domain and the coefficients defining $L$ are smooth, $\alpha = 1$ and we conclude from Theorem 2 that

$$K(\mathcal{B} A) \leq C J.$$

In the case of a so-called crack problem (with smooth coefficients), the largest interior angle is $2\pi$ and the regularity of (1.1) is such that (A.3) does not hold for $\alpha \geq 1/2$. Hence Corollary 3 yields the better estimate and shows that

$$K(\mathcal{B} A) \leq C J^2.$$

Remark 3.1. It is possible to apply the theory of §2 to elliptic problems in three or more dimensions. Many examples are possible, and we consider the simplest. In three dimensions, we let the coarse mesh be a union of equally sized cubes. Finer meshes are obtained by breaking each cube of a coarser mesh into eight smaller cubes in the obvious way. The subspaces $\{\mathcal{M}_k\}$ are defined to be the functions on $\Omega$ which are continuous and piecewise trilinear with respect to the $k$th mesh and vanish on $\partial \Omega$. The nodes of these spaces are the vertices of the cubes defining the mesh. We may take

$$\mathcal{B} u = \sum_{k=1}^J h_k^{-1} \sum_l (u, \phi_k^l) \phi_k^l,$$

where $\{\phi_k^l\}$ denotes the set of nodal basis functions. We emphasize here again that all the terms in (3.6) are independent and hence may be computed concurrently.

Remark 3.2. Assumption (A.1) is often easier to verify than (A.3). For example, we consider the two-dimensional problem (1.1) when the coefficients of the operator $L$ are discontinuous. If the jumps in the coefficients are only along the lines of the coarse mesh, then it is possible to prove that (A.1) holds with $C_1 \leq C J$, where the constant $C$ depends on the local variation of the coefficients of $L$ on the coarse grid triangles but not on the magnitude of the jumps across triangles [19]. This leads to a conditioning result of the form

$$K(\mathcal{B} A) \leq C J^3.$$
The dependence of constant $C_4$ (in (A.3)) on the size of the jumps is a much more difficult question, since it requires the knowledge of the dependence of the elliptic regularity constants on such jumps.

In the remainder of this section, we consider computational issues involved in implementing the above algorithm in serial and parallel computing architectures. However, before proceeding, we make the following observation. Even though we have defined $\mathcal{B}$ as an operator on $\mathcal{M}$, in a preconditioned iterative scheme we are only required to compute $\mathcal{B}v$ given the data $W^j = (v, \phi^j)$. This is because when $v = A_j \theta$, we always compute $\{(A_j \theta, \phi^j) = A(\theta, \phi^j)\}$ and hence avoid the solution of the Gram matrix problem required for the computation of $A_j \theta$.

We first consider the serial version of the algorithm. Let $v \in \mathcal{M}$ be given and define $W^j = (v, \phi^j)$. Let $W_k$ denote the vector with entries $(W^j_k)_i = W^j_k$. We need to compute the action of $\mathcal{B}v$ given $W^j$. We define $W_{k-1}$ from $W_k$ in a recursive manner. Note that each basis function in $\mathcal{M}_{k-1}$ can be written as a local linear combination of basis functions for $\mathcal{M}_k$. Thus, each value of $W_{k-1}$ can be written as a local linear combination of values of $W_k$. Moreover, the work involved in computing $W_{k-1}$ from $W_k$ is proportional to the number of unknowns in $\mathcal{M}_{k-1}$. Consequently, the work involved in computing the vectors $\{W^j_k\}$, $k = 1, \ldots, J$, is bounded by a constant times the number of unknowns in $\mathcal{M}$ once the vectors $\{W^j_k\}$ are known, we are left to compute the representation of $\mathcal{B}v$ in the basis for $\mathcal{M}$. To do this, we compute the representation of

$$\mathcal{B}_m v \equiv \sum_{k=1}^m \sum_{l} (v, \phi^j_k) \phi^j_k,$$

in the basis for $\mathcal{M}_m$, for $m = 1, \ldots, J$. The result at $m = J$ is of course the basis representation for $\mathcal{B}v$. For $m = 1$, the representation is already given by $W_1$. The representation of $\mathcal{B}_m v$ for $m > 1$ is calculated from that of $\mathcal{B}_{m-1} v$ by interpolating the $\mathcal{B}_{m-1} v$ results (i.e., expanding them in terms of the $m$th basis) and adding the $m$th level contribution from $W_m$. The work of calculating the representation of $\mathcal{B}_m v$, given that for $\mathcal{B}_{m-1} v$, is on the order of the number of unknowns in $\mathcal{M}_m$, and thus the total work for this algorithm is bounded by a constant times the number of unknowns on the finest grid.

Remark 3.3. The serial implementation of the operator $\mathcal{B}$ is closely related to the multigrid V-cycle algorithm. The step of computing $W_{k-1}$ from $W_k$ in $\mathcal{B}$ is nothing more than the step which "transfers the residuals" from grid level $k$ to $k - 1$ in a multigrid V-cycle algorithm. However, the multigrid algorithm requires extra computation since it must smooth and then compute new residuals on the $k$th level before transferring. The second step in the serial algorithm for $\mathcal{B}$ is also duplicated in the "coarser to finer interpolation" step in the multigrid V-cycle algorithm. The symmetric multigrid V-cycle requires extra computation since it requires additional smoothing on each grid level.
Thus the serial $\mathcal{B}$ algorithm, in terms of complexity, is similar to a multigrid V-cycle algorithm without smoothing.

We next consider parallel implementation of the preconditioner $\mathcal{B}$. The execution of (1.4) can obviously be made parallel in many ways by breaking up the terms into various numbers of parallel tasks. The optimal splitting of the sum is clearly dependent on characteristics of the individual parallel computer, for example, memory management considerations, task initialization overhead, the number of parallel processors, etc. We note, however, the simplicity of the form of (1.4) allows for almost complete freedom for parallel splitting.

It is of theoretical interest to consider the algorithm on a shared memory machine with an unlimited number of processors. As above, the implementation $\mathcal{B}v$ involves two steps, the calculation of the coefficients $W_k^l$ and the computation of the representation of $\mathcal{B}v$ in the basis for $\mathcal{M}$. Each coefficient can be computed independently and involves a linear combination (not necessarily local) of the values of $W_j$. With enough processors, a linear combination of $m$ numbers can be computed in $\log_2 m$ time. Hence the coefficient vectors $\{W_k^l\}$ can be computed in $\log_2 N$ time where $N$ is the dimension of $\mathcal{M}$. Each coefficient of $\mathcal{B}v$ involves a linear combination of $M_nJ$ contributions from the $J$ grid levels (here, $M_n$ is the maximum number of neighbors for any given level). Thus, computation of $\mathcal{B}v$ can be done in time bounded by $CJ$.

4. A LOCAL REFINEMENT APPLICATION

In this section, we shall consider the application of the parallel multilevel algorithm to the finite element equations corresponding to a problem with mesh refinement. Such mesh refinements are necessary for accurate modeling of problems with various types of singular behavior. For simplicity, we shall make no attempt at generality. Instead, we shall illustrate the technique by considering an example from which many obvious generalizations are possible. For this example, the domain $\Omega$ will be the unit square and we shall approximate the solution to (1.1). The form $A(\cdot, \cdot)$ and the inner product $(\cdot, \cdot)$ will be as in §3. The sequence of grids which we shall consider will be progressively more refined as we approach the corner $(1,1)$. Such a mesh would be effective if, for example, the function $f$ in (1.1) behaved like a $\delta$-function distribution at the point $(1,1)$.

To define the mesh, we first start with a sequence of subspaces $\mathcal{M}_1, \ldots, \mathcal{M}_j$ defined using uniform grids of size $h_k = 2^{-k}$, $k = 1, \ldots, j$, as described in the quasi-uniform case (see §1). The $(j+1)$st triangulation is then defined by refining only those triangles in the upper quarter, $[1/2, 1] \times [1/2, 1]$. Similarly, the $(j+2)$nd triangulation is defined by refining only those triangles in the $(j+1)$st grid which are in the region $[3/4, 1] \times [3/4, 1]$, etc. (see Figure 4.1). The spaces $\mathcal{M}_k$ for $k = j+1, \ldots, J$ are defined to be the continuous functions on $\Omega$ which are piecewise linear with respect to the $k$th grid. Note that this introduces slave nodes into the computation, i.e., the vertices of the triangles.
on the boundary of the $k$th refinement region which are not nodes for the
$(k - 1)$st subspace (see Figure 4.1). These nodes are slaves, since the values of
functions on these nodes are determined by the values of neighboring nodes and
the continuity condition on the subspace. Thus, they do not represent degrees
of freedom in the subspace.

We shall first show that (A.1) is satisfied. The argument in §3 gives that (A.1)
holds for $k = 1, \ldots, j + 1$ since this is just the quasi-uniform case. In order
to complete the proof of (A.1), we shall introduce some additional notation.

Let us first define $h_k = 2^{-k}$ even in the case when $k = j + 1, \ldots, J$, so
that $h_k$ corresponds to the size of the finest triangle in the mesh defining $\mathcal{M}_k$.
In addition, let $\Omega_k = (1 - 2^{j-k}, 1) \times (1 - 2^{j-k}, 1)$. Notice that the mesh size
of the triangulation defining $\mathcal{M}_k$, restricted to $\Omega_k$ is $h_k$, and the functions
in $\mathcal{M}_l$ with support in $\Omega/\Omega_k$ for $l \geq k$ are in $\mathcal{M}_k$. Let $\mathcal{M}_k$ be the space
of piecewise linear functions (which vanish on $\partial \Omega$) defined from the regular
uniform triangulation of $\Omega$ of size $h_k$. Note that both $\mathcal{M}_k$ and $\mathcal{M}_k$ have the
same mesh restricted to $\Omega_k$ and $\mathcal{M}_k \subset \mathcal{M}_k$. Finally, $\tilde{Q}_k$ will denote the $L^2$
projection onto $\mathcal{M}_k$.

We prove (A.1) for $k > j + 1$. Let $v \in \mathcal{M}_l$, $l = k - 1$, and consider the
function $w \in \mathcal{M}_l$ defined by

$$w = \begin{cases} 
\tilde{Q}_l v & \text{at the nodes of } \mathcal{M}_l \text{ in the interior of } \Omega_l, \\
v & \text{at the remaining nodes of } \mathcal{M}_l.
\end{cases}$$
By the definitions of $\tilde{Q}_i$ and $w$, and the triangle inequality,
\[
\|(I - Q_i)v\| \leq \|v - w\| = \|v - w\|_{\Omega_i} \\
\leq \|(I - \tilde{Q}_i)v\| + \|\tilde{Q}_i v - w\|_{\Omega_i},
\]
(4.1)
where $\|\cdot\|_{\Omega_i}$ denotes the $L^2$ norm on $\Omega_i$. Clearly,
\[
\|(I - \tilde{Q}_i)v\| \leq Ch_i A_{i+1/2}(v, v) \leq C\lambda_{i+1}^{-1/2} A_{i+1/2}(v, v),
\]
and hence it suffices to estimate the second term on the right-hand side of (4.1) by the first. But by the definition of $w$,
\[
\|\tilde{Q}_i v - w\|_{\Omega_i}^2 \leq Ch_i^2 \sum_i (\tilde{Q}_i v(x_i^j) - v(x_i^j))^2,
\]
where the sum is taken over the nodes $x_i^j$ on $\partial\Omega_i$. Clearly,
\[
h_i^2 \sum_i (\tilde{Q}_i v(x_i^j) - v(x_i^j))^2 \leq C \|(I - \tilde{Q}_i)v\|_{\Omega_i}^2.
\]
This proves (A.1).

We next define a sequence of operators $\{R_k\}$ satisfying (A.2). For $k \leq j$, $R_k$ is given by (3.2). Let $\{x_k^j\}$ denote the nodes of the $k$th grid, and let $\{\phi_k^j\}$ denote the corresponding nodal basis functions. For each node $x_k^j$ with $k > j$ we define
\[
h_{kl} = \begin{cases} h_k & \text{if } x_k^j \in \overline{\Omega}_k, \\
h_m & \text{if } x_k^j \in \overline{\Omega}_m/\overline{\Omega}_{m+1}, j < m < k.
\end{cases}
\]
Note that if $x_k^j \in \overline{\Omega}_k/\overline{\Omega}_{k+1}$, then $x_k^j$ is a node for each finer subspace and gets assigned the same value $h_k$. We then define
\[
R_k u = h_k^2 \sum_l h_{kl}^{-2} (u, \phi_k^l) \phi_k^l.
\]
(4.2)
We will show that
\[
c_0 \frac{\|u\|^2}{\lambda_k} \leq \langle R_k u, u \rangle \leq c_1 \frac{\|u\|^2}{\lambda_k} \quad \text{for all } u \in \mathcal{M}_k
\]
holds with $c_0$ and $c_1$ not depending on $k$. We proceed as in §3. For $u \in \mathcal{M}_k$, we define $\alpha$ by (3.3) and $(G_k)_{lm} = \langle \phi_l^m, \phi_k^l \rangle$. Let $D_k$ denote the diagonal matrix with diagonal entries $\{h_{kl}\}$. As in §3, $\sum_l h_{kl} \alpha_l^2 = \langle D_k \alpha, \alpha \rangle$ is a norm which is uniformly equivalent to $\|u\|^2 = \langle G_k \alpha, \alpha \rangle$. It immediately follows that there are constants $c_0$ and $c_1$, not depending on $k$, satisfying
\[
c_0 \langle D_k \alpha, \alpha \rangle \leq \langle D_k^{-1} G_k \alpha, G_k \alpha \rangle \leq c_1 \langle D_k \alpha, \alpha \rangle.
\]
Inequality (4.3) then follows from
\[
\langle D_k^{-1} G_k \alpha, G_k \alpha \rangle = \sum_l h_{kl}^{-2} (u, \phi_k^l)^2 = h_k^{-2} \langle R_k u, u \rangle
\]
and (3.1). Hence (A.2) holds for $R_k$ given by (4.2).
We can apply Corollary 3 to show that \( K(\mathcal{B} A) \leq C J^2 \), where \( \mathcal{B} \) is defined by (2.13) with \( R_k \) and \( M_k \) as above. For this application, we have not been able to prove the regularity and approximation assumption (A.3).

For the purpose of implementation, it is more efficient to reorder the terms defining \( \mathcal{B} \). For \( k = j, \ldots, J \) let \( N_k \) be the nodes of \( M_k \) in \( \Omega_k \), and for \( k < J \) let \( N_k^l \) be the nodes of \( M_k \) in \( \Omega_k / \Omega_{k+1} \). For a function \( u \in \mathcal{M} \), it is not difficult to see by induction on \( J \) that

\[
\mathcal{B} u = \sum_{k=1}^{j-1} R_k Q_k u + \sum_{x_j^l \in J_j^l} (u, \phi_j^l) \phi_j^l \\
+ \sum_{k=j}^{J-1} \left[ \sum_{x_k^l \in J_k^l} \gamma_k^j (u, \phi_k^l) \phi_k^l + \sum_{x_k^l \in J_k^j \cap x_j^l} (u, \phi_k^l) \phi_k^l \right],
\]

where \( \gamma_k^j = h_k^{-2} \sum_{m=k}^{J} h_m^2 \). Note that the \( R_k \) terms in the first sum of (4.4) involves the same sums which appear in the uniform case of §3. In addition, the calculation corresponding to the \( k \)th mesh in (4.4) for \( k = j, \ldots, J \) only involves nodal basis functions on \( \Omega_k \).

Finally, we define a simpler preconditioner \( \tilde{\mathcal{B}} \) by replacing \( \gamma_k^j \) by one in (4.4), i.e.,

\[
\tilde{\mathcal{B}} u = \sum_{k=1}^{j} \sum_{l} (u, \phi_k^l) \phi_k^l + \sum_{k=j+1}^{J} \sum_{x_k^l \in J_k^l} (u, \phi_k^l) \phi_k^l.
\]

Note that in (4.5), the \( k \)th refinement grid only adds a sum over the nodes in \( \Omega_k \). We note that for \( u \in \mathcal{M} \), by (4.4),

\[
(\mathcal{B} u, u) = \sum_{k=1}^{j-1} \sum_{l} (u, \phi_k^l)^2 + \sum_{x_j^l \in J_j^l} (u, \phi_j^l)^2 \\
+ \sum_{k=j}^{J-1} \left[ \sum_{x_k^l \in J_k^l} \gamma_k^j (u, \phi_k^l)^2 + \sum_{x_k^l \in J_k^j \cap J_j^l} (u, \phi_k^l)^2 \right],
\]

with an analogous expression for \( \tilde{\mathcal{B}} \). Clearly, \( 1 \leq \gamma_k^j \leq 4/3 \), from which it follows that

\[
(\tilde{\mathcal{B}} u, u) \leq (\mathcal{B} u, u) \leq \frac{4}{3} (\tilde{\mathcal{B}} u, u) \quad \text{for all } u \in \mathcal{M}.
\]

From the discussion in §3, it is clear that the first sum in (4.5) is a preconditioner for the problem on \( \mathcal{M}_j \), i.e., the finest uniform grid. As we shall see, this sum can also be replaced by any uniform preconditioner for \( A_j \) without adversely affecting the asymptotic behavior of the overall condition number. Indeed, let the operator \( R_j \) be a preconditioner for \( A_j \) (satisfying (2.19) and
the second inequality of (A.2)), and define for \( u \in \mathcal{M} \),

\[
\tilde{B}u = R_j Q_j u + \sum_{k=j+1}^{j} \sum_{x_k^{j} \in t_k^j} (u, \phi_k^j) \phi_k^j.
\]

(4.6)

Note that by Remark 2.3, the operator

\[
\tilde{B}u = \sum_{k=j}^{J} R_k Q_k u
\]

satisfies \( K(\tilde{B}A) \leq C(J - j)^2 \). We will show that \( \tilde{B} \) is uniformly equivalent to \( \hat{B} \). Reordering the terms as in (4.4), we have

\[
\tilde{B}u = R_j Q_j u + \sum_{x_j^j \in t_j^j} (\gamma^j_k - 1) (u, \phi_j^j) \phi_j^j
\]

\[
+ \sum_{k=j+1}^{j-1} \left[ \sum_{x_k^j \in t_k^j} (\gamma^r_k (u, \phi_k^r) \phi_k^r + \sum_{x_k^j \in t_k^j} (u, \phi_k^j) \phi_k^j \right]
\]

\[
+ \sum_{x_j^j \in t_j^j} (u, \phi_j^j) \phi_j^j.
\]

(4.7)

It clearly follows from (4.7) and \( 1 \leq \gamma^j_k \leq 4/3 \) that the operator \( \tilde{B} \) is uniformly equivalent to the operator

\[
\hat{B}u + \sum_{x_j^j \in t_j^j} (u, \phi_j^j) \phi_j^j.
\]

But, by (3.5) and (2.19),

\[
\sum_{x_j^j \in t_j^j} (u, \phi_j^j)^2 \leq C \lambda_j^{-1} \| Q_j u \| \leq C (A^{-1}_j Q_j u, Q_j u)
\]

\[
\leq C (R_j Q_j u, Q_j u) \leq C (\tilde{B}u, u),
\]

from which the equivalence of \( \tilde{B} \) and \( \hat{B} \) follows. Thus, \( K(\tilde{B}A) \leq C(J - j)^2 \).

Remark 4.1. Clearly, we could generalize this example to include much more general refinements for problems in \( R^2 \) as well as higher-dimensional space. Note that the refinement only changes the preconditioner \( \hat{B} \) (resp. \( \tilde{B} \)) by adding additional terms in (4.5) (resp. (4.6)) involving nodes from the refinement region. Thus, this approach is well suited to dynamic adaptive refinement techniques. New refinement regions add terms to the sum, whereas the \("de-refinement"\) of existing regions only takes away terms from the sum. The operator \( \tilde{B} \) is even more useful in this context, since it allows the easy inclusion of this refinement preconditioner into existing large-scale uniform grid codes. Preconditioners for the uniform grid already available in the existing code can
be used, supplemented with additional routines implementing the terms due to the refinement.

5. Numerical results

In this section, we provide the results of numerical examples illustrating the theory developed in the earlier sections. To demonstrate the performance of the proposed algorithms, we shall provide numerical results for a two-dimensional problem with full elliptic regularity and one with less than full elliptic regularity, a two-dimensional example with a geometric mesh refinement and a three-dimensional example. In all of the reported results, the experimentally observed behavior of the condition number of the preconditioned system was in agreement with the theory presented earlier. In the first example, we also compare the results of the new method with those obtained using the hierarchical preconditioning method [20] and a classical V-cycle multigrid preconditioner [4].

For our first example, we consider Problem (1.1) when \( L = -\Delta \equiv -\partial^2/\partial x_1^2 - \partial^2/\partial x_2^2 \) and \( \Omega \) is the unit square. This example satisfies the regularity and approximation assumption (A.3) for \( \alpha = 1 \) as well as (A.1).

We will use a finite element discretization of (1.1) and develop a sequence of grids in a standard way. To define the coarsest grid, we start by breaking the square into four smaller squares of side length 1/2 and then dividing each smaller square into two triangles by connecting the lower left-hand corner with the upper right-hand corner. Subsequently, finer grids are developed as in the introduction, i.e., by dividing each triangle into the four triangles formed by the edges of the original triangle and the lines connecting the centers of these edges. The space \( M_i \) is defined to be the set of continuous functions on \( \Omega \) which are piecewise linear on the \( i \)th triangulation and vanish on \( \partial \Omega \).

We shall compare three preconditioners for (1.2). The first preconditioner \( B_H \) is defined by the multilevel algorithm (2.13) with \( R_k \) given by (3.2) and fits into the framework considered in §3. For comparison, we also provide results for the hierarchical preconditioner \( B_H \) [20] and a preconditioner \( B_M \) defined by a standard symmetric V-cycle of multigrid [4]. The multigrid algorithm uses one sweep of Jacobi smoothing whenever a grid level is visited, and hence results in two smoothing steps on each grid for each evaluation of the preconditioner. The multigrid algorithm uses \( h_0 = 1/4 \) for the coarsest grid, while both the hierarchical and the parallel multilevel algorithms use \( h_0 = 1/2 \).

Table 5.1 gives the condition numbers \( K \) of the preconditioned systems \( B_H A \), \( B_M A \), and \( B_M A \) corresponding, respectively, to the hierarchical preconditioner, the preconditioner defined by (2.13), and the V-cycle multigrid preconditioner. We note that for these examples, a preconditioned conjugate gradient algorithm using the new preconditioner would be expected to take twice as many iterations as the corresponding algorithm using the V-cycle of multigrid. However, even in a serial implementation, the multigrid algorithm involves
PARALLEL MULTILEVEL PRECONDITIONERS

Table 5.1

<table>
<thead>
<tr>
<th>$h_j$</th>
<th>$K(B_{HA})$</th>
<th>$K(B_{MA})$</th>
<th>$K(B_{MA})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>19</td>
<td>7.0</td>
<td>2.3</td>
</tr>
<tr>
<td>1/32</td>
<td>31</td>
<td>8.1</td>
<td>2.4</td>
</tr>
<tr>
<td>1/64</td>
<td>43</td>
<td>9.0</td>
<td>2.4</td>
</tr>
<tr>
<td>1/128</td>
<td>58</td>
<td>9.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

This test problem illustrates an example where all three methods work reasonably well. However, we note that $B$ is preferred over standard multigrid when the parallel aspects of the algorithm are important. In addition, $B$ generalizes to higher-dimensional problems without convergence rate deterioration (see Table 5.5) and hence would be preferred to the hierarchical method in three-dimensional computations.

We next consider the above preconditioners on a problem with less than full elliptic regularity. We again consider (1.1) with $L$ given by the Laplacian and $\Omega$ equal to the "slit domain", i.e., $\Omega$ is the set of points in the interior of the unit square excluding the line $\{(1/2, y) : y \in [1/2, 1)\}$. This example does not satisfy the a priori estimates used in the proof of the regularity and approximation assumption (A.3) for $\alpha \geq 1/2$. However, assumption (A.1) is satisfied.

Table 5.2

<table>
<thead>
<tr>
<th>$h_j$</th>
<th>$K(B_{HA})$</th>
<th>$K(B_{MA})$</th>
<th>$K(B_{MA})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>14.6</td>
<td>7.9</td>
<td>2.6</td>
</tr>
<tr>
<td>1/32</td>
<td>25.17</td>
<td>10.0</td>
<td>2.9</td>
</tr>
<tr>
<td>1/64</td>
<td>38.2</td>
<td>12.6</td>
<td>3.1</td>
</tr>
<tr>
<td>1/128</td>
<td>53.8</td>
<td>14.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Table 5.2 gives the condition numbers $K$ of the preconditioned systems $B_{HA}$, $B_{MA}$, and $B_{MA}$ corresponding, respectively, to the hierarchical preconditioner, the preconditioner defined by (2.13), and the V-cycle multigrid preconditioner. The results are in general agreement with the theoretical estimates

$$K(B_{HA}) \leq C \ln^2(1/h_j),$$
$$K(B_{MA}) \leq C \ln^2(1/h_j),$$

for the respective methods.
We next provide numerical results for the refinement example of §4. We once again consider the solution of (1.1) with $L$ the Laplacian and $\Omega$ the unit square. The sequence of spaces $\mathcal{M}_1 \subset \cdots \subset \mathcal{M}_j$ are as developed in §4 and provide results for the preconditioner $\mathcal{B}$ defined by (4.5). As noted in §4, some such refinement would be necessary if, for example, the function $f$ had a $\delta$-function behavior at the point $(1,1)$. Table 5.3 gives the condition number of the preconditioned system $BA$ as a function of the mesh size of the uniform grid $h_j$ and the number of refinement levels $l$. The size of the finest triangle can be computed by dividing the uniform mesh size by $2^l$. In all of the runs, the coarsest grid level corresponded to $h_0 = 1/2$. The numerical results seem to indicate that an increase in the number of uniform levels has a greater effect on the condition number than an increase in the number of refinement levels.

Table 5.3
Condition numbers for the refinement example

<table>
<thead>
<tr>
<th>$h_j$</th>
<th>$l = 1$</th>
<th>$l = 2$</th>
<th>$l = 3$</th>
<th>$l = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>6.3</td>
<td>6.5</td>
<td>6.7</td>
<td>6.9</td>
</tr>
<tr>
<td>1/16</td>
<td>7.7</td>
<td>7.9</td>
<td>8.05</td>
<td>8.1</td>
</tr>
<tr>
<td>1/32</td>
<td>8.8</td>
<td>9.0</td>
<td>9.1</td>
<td>9.2</td>
</tr>
<tr>
<td>1/64</td>
<td>9.6</td>
<td>9.7</td>
<td>9.8</td>
<td>9.9</td>
</tr>
</tbody>
</table>

We next present results for the refinement operator defined by (4.6). The problem and sequence of subspaces are as just described but only the subspaces $\mathcal{M}_k$, $k \geq j$, are used. In (4.6), we use a multigrid preconditioner (cf. [4]) scaled by 4 to define $R_j$, the operator on the finest uniform grid. The scaling was introduced to balance the size of the two terms in (4.6). Table 5.4 gives the condition number of the preconditioned system $BA$ as a function of the mesh size of the uniform grid $h_j$ and the number of refinement levels $l$.

Table 5.4
Condition numbers for $BA$ using multigrid preconditioning on level $j$

<table>
<thead>
<tr>
<th>$h_j$</th>
<th>$l = 1$</th>
<th>$l = 2$</th>
<th>$l = 3$</th>
<th>$l = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>4.3</td>
<td>6.0</td>
<td>6.4</td>
<td>6.6</td>
</tr>
<tr>
<td>1/16</td>
<td>4.7</td>
<td>6.7</td>
<td>7.6</td>
<td>8.1</td>
</tr>
<tr>
<td>1/32</td>
<td>4.9</td>
<td>7.0</td>
<td>8.4</td>
<td>9.2</td>
</tr>
<tr>
<td>1/64</td>
<td>5.0</td>
<td>7.1</td>
<td>8.5</td>
<td>9.6</td>
</tr>
</tbody>
</table>

As a final example, we illustrate the preconditioning technique on a three-dimensional problem. We consider a Galerkin approximation to the Laplace equation

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

(5.1)
where $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ and $\Omega$ is the unit cube. We define the coarse mesh by dividing $\Omega$ into eight smaller cubes of size $h_0 = 1/2$. Successively finer meshes are formed by dividing each cube of a coarser mesh into eight smaller cubes. The finite element space $\mathcal{M}_k$ is defined to be the set of continuous functions on $\Omega$ which are trilinear with respect to the $k$-th mesh and vanish on $\partial \Omega$.

Table 5.5 gives the condition number $K$ of the preconditioned system $\mathcal{B}A$ where $\mathcal{B}$ is defined by (3.6). This example satisfies full elliptic regularity, and the regularity and approximation assumption (A.3) holds with $\alpha = 1$. Thus, the theory predicts only a logarithmic growth in the condition number, which is in agreement with the reported results. Note the finite element spaces are of rather large dimension, in fact, the $h_j = 1/64$ example has over a quarter of a million unknowns.

**Table 5.5**

<table>
<thead>
<tr>
<th>$h_j$</th>
<th>$K(\mathcal{B}A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>4.1</td>
</tr>
<tr>
<td>1/16</td>
<td>5.2</td>
</tr>
<tr>
<td>1/32</td>
<td>6.0</td>
</tr>
<tr>
<td>1/64</td>
<td>6.6</td>
</tr>
</tbody>
</table>

**Bibliography**


Department of Mathematics, Cornell University, Ithaca, New York 14853. E-mail: bramble@mssun7.msi.cornell.edu

Brookhaven National Laboratory, Upton, New York 11973. E-mail: pasciak@bnl.gov

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802. E-mail: xu@rayleigh.psu.edu