Convergence of extended Lagrange interpolation
HTML articles powered by AMS MathViewer
- by Giuliana Criscuolo, Giuseppe Mastroianni and Donatella Occorsio PDF
- Math. Comp. 55 (1990), 197-212 Request permission
Abstract:
The authors give a procedure to construct extended interpolation formulae and prove some uniform convergence theorems.References
- Alfredo Bellen, Extended projection methods, Boll. Un. Mat. Ital. Suppl. 1 (1980), 239–251 (Italian, with English summary). MR 677700
- Alfredo Bellen, A note on mean convergence of Lagrange interpolation, J. Approx. Theory 33 (1981), no. 2, 85–95. MR 643904, DOI 10.1016/0021-9045(81)90078-2
- Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of the Gauss quadrature rules for Cauchy principal value integrals, Ricerche Mat. 35 (1986), no. 1, 45–60. MR 889859 —, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, J. Approx. Theory (to appear).
- Walter Gautschi, A survey of Gauss-Christoffel quadrature formulae, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 72–147. MR 661060 —, Gauss-Kronrod quadrature—A survey, Numerical Methods and Approximation Theory III (G. V. Milovanović, ed.), Prosveta, Niš, 1988, pp. 39-66.
- H. Gonska and E. Hinnemann, Punktweise Abschätzungen zur Approximation durch algebraische Polynome, Acta Math. Hungar. 46 (1985), no. 3-4, 243–254 (German). MR 832716, DOI 10.1007/BF01955736
- Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
- Giovanni Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), no. 2, 137–158. MR 652464, DOI 10.1137/1024039
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- Paul Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669–698. MR 732113, DOI 10.1090/S0002-9947-1984-0732113-4
- Paul Nevai, Géza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), no. 1, 3–167. MR 862231, DOI 10.1016/0021-9045(86)90016-X
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 55 (1990), 197-212
- MSC: Primary 65D05; Secondary 41A05
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023044-X
- MathSciNet review: 1023044