Linear combinations of orthogonal polynomials generating positive quadrature formulas
HTML articles powered by AMS MathViewer
- by Franz Peherstorfer PDF
- Math. Comp. 55 (1990), 231-241 Request permission
Abstract:
Let ${p_k}(x) = {x^k} + \cdots$, $k \in {{\mathbf {N}}_0}$, be the polynomials orthogonal on $[ - 1, + 1]$ with respect to the positive measure $d\sigma$. We give sufficient conditions on the real numbers ${\mu _j}$, $j = 0, \ldots ,m$, such that the linear combination of orthogonal polynomials $\sum _{j = 0}^m{\mu _j}{p_{n - j}}$ has n simple zeros in $( - 1, + 1)$ and that the interpolatory quadrature formula whose nodes are the zeros of $\sum _{j = 0}^m{\mu _j}{p_{n - j}}$ has positive weights.References
- Richard Askey, Positive quadrature methods and positive polynomial sums, Approximation theory, V (College Station, Tex., 1986) Academic Press, Boston, MA, 1986, pp. 1–29. MR 903680
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884
- Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Zapiski Naučno-Issled. Inst. Mat. Meh. Har′kov. Mat. Obšč. (4) 19 (1948), 35–120 (Russian). MR 0036872
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
- Charles A. Micchelli, Some positive Cotes numbers for the Chebyshev weight function, Aequationes Math. 21 (1980), no. 1, 105–109. MR 594098, DOI 10.1007/BF02189344
- C. A. Micchelli and T. J. Rivlin, Numerical integration rules near Gaussian quadrature, Israel J. Math. 16 (1973), 287–299. MR 366003, DOI 10.1007/BF02756708
- Franz Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), no. 6, 935–942. MR 635246, DOI 10.1137/0512079
- Franz Peherstorfer, Characterization of quadrature formula. II, SIAM J. Math. Anal. 15 (1984), no. 5, 1021–1030. MR 755862, DOI 10.1137/0515079
- H. J. Schmid, A note on positive quadrature rules, Rocky Mountain J. Math. 19 (1989), no. 1, 395–404. Constructive Function Theory—86 Conference (Edmonton, AB, 1986). MR 1016190, DOI 10.1216/RMJ-1989-19-1-395
- G. Sottas and G. Wanner, The number of positive weights of a quadrature formula, BIT 22 (1982), no. 3, 339–352. MR 675668, DOI 10.1007/BF01934447
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 55 (1990), 231-241
- MSC: Primary 65D32; Secondary 41A55, 42C05
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023052-9
- MathSciNet review: 1023052