## Viscous splitting for the unbounded problem of the Navier-Stokes equations

HTML articles powered by AMS MathViewer

- by Lung-An Ying PDF
- Math. Comp.
**55**(1990), 89-113 Request permission

## Abstract:

The viscous splitting for the exterior initial-boundary value problems of the Navier-Stokes equations is considered. It is proved that the approximate solutions are uniformly bounded in the space ${L^\infty }(0,T;{H^{s + 1}}(\Omega ))$, $s < \frac {3}{2}$, and converge with a rate of $O(k)$ in the space ${L^\infty }(0,T;{H^1}(\Omega ))$, where*k*is the length of the time steps.

## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**125307**, DOI 10.1002/cpa.3160120405 - Giovanni Alessandrini, Avron Douglis, and Eugene Fabes,
*An approximate layering method for the Navier-Stokes equations in bounded cylinders*, Ann. Mat. Pura Appl. (4)**135**(1983), 329–347 (1984) (English, with Italian summary). MR**750540**, DOI 10.1007/BF01781075 - J. Thomas Beale and Andrew Majda,
*Rates of convergence for viscous splitting of the Navier-Stokes equations*, Math. Comp.**37**(1981), no. 156, 243–259. MR**628693**, DOI 10.1090/S0025-5718-1981-0628693-0 - G. Benfatto and M. Pulvirenti,
*Convergence of Chorin-Marsden product formula in the half-plane*, Comm. Math. Phys.**106**(1986), no. 3, 427–458. MR**859819** - Alexandre Joel Chorin,
*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), no. 4, 785–796. MR**395483**, DOI 10.1017/S0022112073002016 - Hiroshi Fujita and Tosio Kato,
*On the Navier-Stokes initial value problem. I*, Arch. Rational Mech. Anal.**16**(1964), 269–315. MR**166499**, DOI 10.1007/BF00276188 - Tosio Kato,
*On classical solutions of the two-dimensional nonstationary Euler equation*, Arch. Rational Mech. Anal.**25**(1967), 188–200. MR**211057**, DOI 10.1007/BF00251588 - O. A. Ladyzhenskaya,
*The mathematical theory of viscous incompressible flow*, Mathematics and its Applications, Vol. 2, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged; Translated from the Russian by Richard A. Silverman and John Chu. MR**0254401**
J. L. Lions and E. Magenes, - F. J. McGrath,
*Nonstationary plane flow of viscous and ideal fluids*, Arch. Rational Mech. Anal.**27**(1967), 329–348. MR**221818**, DOI 10.1007/BF00251436 - Roger Temam,
*On the Euler equations of incompressible perfect fluids*, J. Functional Analysis**20**(1975), no. 1, 32–43. MR**0430568**, DOI 10.1016/0022-1236(75)90052-x - Long An Ying,
*Viscosity splitting method in bounded domains*, Sci. China Ser. A**32**(1989), no. 8, 908–921. MR**1055308**
L.-a. Ying, - Lung An Ying,
*On the viscosity splitting method for initial-boundary value problems of the Navier-Stokes equations*, Chinese Ann. Math. Ser. B**10**(1989), no. 4, 487–512. A Chinese summary appears in Chinese Ann. Math. Ser. A 10 (1989), no. 5, 641. MR**1038384** - Lungan Ying,
*Viscosity splitting method for three-dimensional Navier-Stokes equations*, Acta Math. Sinica (N.S.)**4**(1988), no. 3, 210–226. A Chinese summary appears in Acta Math. Sinica 32 (1989), no. 4, 575. MR**965569**, DOI 10.1007/BF02560577 - Lung-an Ying,
*Convergence study for viscous splitting in bounded domains*, Numerical methods for partial differential equations (Shanghai, 1987) Lecture Notes in Math., vol. 1297, Springer, Berlin, 1987, pp. 184–202. MR**929048**, DOI 10.1007/BFb0078550

*Nonhomogeneous boundary value problems and applications*, Springer-Verlag, 1972.

*The viscosity splitting method for the Navier-Stokes equations in bounded domains*, Science Report, Department of Mathematics and Institute of Mathematics, Peking University, October 1986.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**55**(1990), 89-113 - MSC: Primary 35Q30; Secondary 65N99, 76D05, 76D07
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023053-0
- MathSciNet review: 1023053