Error estimates arising from certain pseudorandom sequences in a quasirandom search method
HTML articles powered by AMS MathViewer
- by Ricardo A. Mitchell PDF
- Math. Comp. 55 (1990), 289-297 Request permission
Abstract:
In this paper we apply number-theoretic results to estimate the dispersion, a measure of denseness for sequences in a bounded set, of the Halton and Hammersley sequences in the hypercube ${I^s} = {[0,1]^s}$. It is seen that they attain the minimal order of magnitude for the dispersion.References
- H. Niederreiter, A quasi-Monte Carlo method for the approximate computation of the extreme values of a function, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 523–529. MR 820248
- Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, DOI 10.1090/S0002-9904-1978-14532-7
- H. Niederreiter and Walter Philipp, Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution $\textrm {mod}\ 1$, Duke Math. J. 40 (1973), 633–649. MR 337873, DOI 10.1215/S0012-7094-73-04055-6
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Loo Keng Hua and Yuan Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981. Translated from the Chinese. MR 617192, DOI 10.1007/978-3-642-67829-5
- H. Niederreiter, On a measure of denseness for sequences, Topics in classical number theory, Vol. I, II (Budapest, 1981) Colloq. Math. Soc. János Bolyai, vol. 34, North-Holland, Amsterdam, 1984, pp. 1163–1208. MR 781180
- H. Niederreiter, Quantitative versions of a result of Hecke in the theory of uniform distribution $\textrm {mod}\ 1$, Acta Arith. 28 (1975/76), no. 3, 321–339. MR 389778, DOI 10.4064/aa-28-3-321-339
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 55 (1990), 289-297
- MSC: Primary 65C10; Secondary 11K45
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023765-9
- MathSciNet review: 1023765