## A nonconforming multigrid method for the stationary Stokes equations

HTML articles powered by AMS MathViewer

- by Susanne C. Brenner PDF
- Math. Comp.
**55**(1990), 411-437 Request permission

## Abstract:

An optimal-order*W*-cycle multigrid method for solving the stationary Stokes equations is developed, using P1 nonconforming divergence-free finite elements.

## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - Randolph E. Bank and Todd Dupont,
*An optimal order process for solving finite element equations*, Math. Comp.**36**(1981), no. 153, 35–51. MR**595040**, DOI 10.1090/S0025-5718-1981-0595040-2
D. Braess and R. Verfürth, - J. H. Bramble and S. R. Hilbert,
*Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation*, SIAM J. Numer. Anal.**7**(1970), 112–124. MR**263214**, DOI 10.1137/0707006 - James H. Bramble, Joseph E. Pasciak, and Jinchao Xu,
*The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms*, Math. Comp.**56**(1991), no. 193, 1–34. MR**1052086**, DOI 10.1090/S0025-5718-1991-1052086-4 - Susanne C. Brenner,
*An optimal-order multigrid method for $\textrm {P}1$ nonconforming finite elements*, Math. Comp.**52**(1989), no. 185, 1–15. MR**946598**, DOI 10.1090/S0025-5718-1989-0946598-X - Susanne C. Brenner,
*An optimal-order nonconforming multigrid method for the biharmonic equation*, SIAM J. Numer. Anal.**26**(1989), no. 5, 1124–1138. MR**1014877**, DOI 10.1137/0726062
—, - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - M. Crouzeix and P.-A. Raviart,
*Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**7**(1973), no. R-3, 33–75. MR**343661** - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5
W. Hackbusch, - R. B. Kellogg and J. E. Osborn,
*A regularity result for the Stokes problem in a convex polygon*, J. Functional Analysis**21**(1976), no. 4, 397–431. MR**0404849**, DOI 10.1016/0022-1236(76)90035-5 - Stephen F. McCormick (ed.),
*Multigrid methods*, Frontiers in Applied Mathematics, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR**972752**, DOI 10.1137/1.9781611971057
L. S. D. Morley, - P. Peisker and D. Braess,
*A conjugate gradient method and a multigrid algorithm for Morley’s finite element approximation of the biharmonic equation*, Numer. Math.**50**(1987), no. 5, 567–586. MR**880336**, DOI 10.1007/BF01408577 - François Thomasset,
*Implementation of finite element methods for Navier-Stokes equations*, Springer Series in Computational Physics, Springer-Verlag, New York-Berlin, 1981. MR**720192**
S. Zhang,

*Multi-grid methods for non-conforming finite element methods*, preprint number 453, Universität Heidelberg, March 1988.

*Multigrid methods for nonconforming finite elements*, Dissertation, Univ. of Michigan, 1988.

*Multi-grid methods and applications*, Springer-Verlag, Berlin and Heidelberg, 1985.

*The triangular equilibrium problem in the solution of plate bending problems*, Aero. Quart.

**19**(1968), 149-169.

*Multi-level iterative techniques*, Dissertation, Pennsylvania State Univ., 1988.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**55**(1990), 411-437 - MSC: Primary 65N30; Secondary 65F10, 65N22, 76D07, 76M10
- DOI: https://doi.org/10.1090/S0025-5718-1990-1035927-5
- MathSciNet review: 1035927