Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Multiconstrained variational problems of nonlinear eigenvalue type: new formulations and algorithms
HTML articles powered by AMS MathViewer

by Alexander Eydeland, Joel Spruck and Bruce Turkington PDF
Math. Comp. 55 (1990), 509-535 Request permission

Abstract:

A new variational approach is proposed for a class of semilinear elliptic eigenvalue problems involving many eigenvalue parameters. These problems arise, for instance, in the modelling of magnetohydrodynamic equilibria with one spatial symmetry. In this case, the physical variational principle imposes a continuously infinite family of constraints, which prescribes the mass and helicity within every flux tube. The equilibrium equations therefore contain unspecified profile functions that are determined along with the solution as multipliers for those constraints. A prototype problem for this general class is formulated, and a natural discretization of its constraint family is introduced. The resulting multiconstrained minimization problem is solved by an iterative algorithm, which is based on relaxation of the given nonlinear equality constraints to linearized inequalities at each iteration. By appealing to convexity properties, the monotonicity and global convergence of this algorithm is proved. The explicit construction of the iterative sequence is obtained by a dual variational characterization.
References
    V. I. Arnold, Variational principles for three-dimensional steady state flows of an ideal fluid, Appl. Math. Mech. 29 (1965), 1002-1008.
  • V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
  • G. Bateman, MHD instabilities, MIT Press, Cambridge, Mass., 1978.
  • T. Brooke Benjamin, Impulse, flow force and variational principles, IMA J. Appl. Math. 32 (1984), no. 1-3, 3–68. MR 740456, DOI 10.1093/imamat/32.1-3.3
  • F. Bauer, O. Betancourt, and P. Garabedian, A computational method in plasma physics, Springer-Verlag, Berlin, Heidelberg, and New York, 1978. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience, New York, 1937.
  • Alexander Eydeland and Joel Spruck, The inverse power method for semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 273–286. MR 956070, DOI 10.1007/978-1-4613-9605-5_{1}6
  • A. Eydeland, J. Spruck, and B. Turkington, A computational method for multiconstrained variational problems in magnetohydrodynamics (in preparation).
  • Avner Friedman, Variational principles and free-boundary problems, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982. MR 679313
  • David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
  • R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, 1984.
  • Harold Grad, Magnetic confinement fusion energy research, Mathematical aspects of production and distribution of energy (Proc. Sympos., San Antonio, Tex., 1976) Proc. Sympos. Appl. Math., XXI, Amer. Math. Soc., Providence, R.I., 1977, pp. 3–40. MR 483655
  • H. Grad, P. N. Hu, and D. C. Stevens, Adiabatic evolution of plasma equilibria, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 3789-3793.
  • A. D. Ioffe and V. M. Tihomirov, Theorie der Extremalaufgaben, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Translated from the Russian by Bernd Luderer. MR 527119
  • M. D. Kruskal and R. M. Kulsrud, Equilibrium of a magnetically confined plasma in a toroid, Phys. Fluids 1 (1958), 265–274. MR 112549, DOI 10.1063/1.1705884
  • Peter Laurence and E. W. Stredulinsky, A new approach to queer differential equations, Comm. Pure Appl. Math. 38 (1985), no. 3, 333–355. MR 784478, DOI 10.1002/cpa.3160380306
  • T. Ch. Mouschovias, Nonhomologous contraction and equilibria of self-gravitating magnetic interstellar clouds embedded in an intercloud medium: Star formation I, Formulation of the problem and method of solution, Astrophys. J. 206 (1976), 753-767.
  • J. Mossino and R. Temam, Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J. 48 (1981), no. 3, 475–495. MR 630581
  • R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N.J., 1970.
  • R. Temam, Monotone rearrangement of a function and the Grad-Mercier equation of plasma physics, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna, 1979, pp. 83–98. MR 533163
  • L. Woltjer, Hydromagnetic equilibrium. III. Axisymmetric incompressible media, Astrophys. J. 130 (1959), 400–404. MR 110412, DOI 10.1086/146731
  • L. Woltjar, Hydromagnetic equilibrium. IV. Axisymmetric compressible media, Astrophys. J. 130 (1959), 404–413. MR 110413, DOI 10.1086/146732
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Math. Comp. 55 (1990), 509-535
  • MSC: Primary 49R05; Secondary 35J85, 76W05
  • DOI: https://doi.org/10.1090/S0025-5718-1990-1035931-7
  • MathSciNet review: 1035931