Finding isomorphisms between finite fields
HTML articles powered by AMS MathViewer
- by H. W. Lenstra PDF
- Math. Comp. 56 (1991), 329-347 Request permission
Abstract:
We show that an isomorphism between two explicitly given finite fields of the same cardinality can be exhibited in deterministic polynomial time.References
-
L. M. Adleman and H. W. Lenstra, Jr., Finding irreducible polynomials over finite fields, Proc. 18th Annual ACM Sympos. on Theory of Computing (STOC), Berkeley, 1986, pp. 350-355.
- Walter Borho, Große Primzahlen und befreundete Zahlen: Über den Lucas-Test und Thabit-Regeln, Mitt. Math. Ges. Hamburg 11 (1983), no. 2, 232–256 (German, with English summary). In collaboration with J. Buhl, H. Hoffmann, S. Mertens, E. Nebgen and R. Reckow. MR 744530
- H. Cohen and H. W. Lenstra Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), no. 165, 297–330. MR 726006, DOI 10.1090/S0025-5718-1984-0726006-X S. A. Evdokimov, Efficient factorization of polynomials over finite fields and generalized Riemann hypothesis, prepublication, 1986.
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- A. K. Lenstra, Factorization of polynomials, Computational methods in number theory, Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 169–198. MR 700263 A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), North-Holland (to appear).
- H. W. Lenstra Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), no. 177, 217–231. MR 866111, DOI 10.1090/S0025-5718-1987-0866111-3
- E. Hastings Moore, A doubly-infinite system of simple groups, Bull. Amer. Math. Soc. 3 (1893), no. 3, 73–78. MR 1557275, DOI 10.1090/S0002-9904-1893-00178-X
- Victor Shoup, New algorithms for finding irreducible polynomials over finite fields, Math. Comp. 54 (1990), no. 189, 435–447. MR 993933, DOI 10.1090/S0025-5718-1990-0993933-0 B. L. van der Waerden, Algebra, vol. I, seventh ed., Springer-Verlag, Berlin, 1966.
Additional Information
- © Copyright 1991 American Mathematical Society
- Journal: Math. Comp. 56 (1991), 329-347
- MSC: Primary 11T30; Secondary 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-1991-1052099-2
- MathSciNet review: 1052099