ON GENERATING POLYNOMIALS WHICH ARE ORTHOGONAL
OVER SEVERAL INTERVALS

BERND FISCHER AND GENE H. GOLUB

Abstract. We consider the problem of generating the recursion coefficients of
orthogonal polynomials for a given weight function. The weight function is
assumed to be the weighted sum of weight functions, each supported on its own
interval. Some of these intervals may coincide, overlap or are contiguous. We
discuss three algorithms. Two of them are based on modified moments, whereas
the other is based on an explicit expression for the desired coefficients. Several
examples, illustrating the numerical performance of the various methods, are
presented.

1. Introduction

Let $[l_j, u_j]$, $j = 1, 2, \ldots, N$, $l_1 \leq l_2 \leq \cdots \leq l_N$, be N not necessarily
disjoint real intervals. Furthermore, let ω_j be a nonnegative weight function
on $[l_j, u_j]$, $j = 1, 2, \ldots, N$. With every ω_j there is associated a system of
orthogonal polynomials $\{p_k^{(j)}\}$, where $p_k^{(j)}$ has exact degree k and

$$
\begin{align*}
\int_{l_j}^{u_j} p_k^{(j)}(x)p_m^{(j)}(x)\omega_j(x)\,dx &= 0 \quad \text{if } k \neq m, \\
> 0 \quad \text{if } k = m.
\end{align*}
$$

They satisfy, as is well known, a three-term recurrence relation

$$
\begin{align*}
xp_k^{(j)}(x) &= b_k^{(j)}p_{k+1}^{(j)}(x) + a_k^{(j)}p_k^{(j)}(x) + c_k^{(j)}p_{k-1}^{(j)}(x), \\
p_0^{(j)}(x) &\equiv 1,
p_{-1}^{(j)}(x) \equiv 0,
\end{align*}
$$

where $a_k^{(j)}$, $c_k^{(j)}$ are real numbers and $b_k^{(j)} \cdot c_k^{(j)} > 0$. We set

$$
l := l_1 \quad \text{and} \quad u := \max_{1 \leq j \leq N} u_j
$$

and consider the nonnegative weight function $\omega(x)$ defined on the interval
$[l, u]$ by

$$
\omega(x) := \sum_{j=1}^{N} \epsilon_j \omega_{[l_j, u_j]}(x)\omega_j(x) \quad (\geq 0),
$$

Received August 22, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 65F25; Secondary 33A65.
The work of the first author was supported by the German Research Association (DFG).
The second author was supported in part by the U.S. Army under grant DAA103-87-K-0095.
where
\[e_j \in \{-1, 1\} \quad \text{and} \quad \mathcal{P}_{[l_j, u_j]}(x) := \begin{cases} \frac{1}{\omega(x)} & \text{if } x \in [l_j, u_j], \\ 0 & \text{if } x \notin [l_j, u_j]. \end{cases} \]

The inner product associated with \(\omega(x) \) will be denoted by \(\langle \cdot, \cdot \rangle \), i.e.,
\[
\langle f, g \rangle := \int_{l_j}^{u_j} f(x)g(x)\omega(x)\,dx = \sum_{j=1}^{N} e_j \int_{l_j}^{u_j} f(x)g(x)\omega_j(x)\,dx.
\]

Clearly, there exists a set of polynomials \(\{\psi_k\} \) that are orthogonal with respect to this inner product. In this paper we investigate the problem of numerically generating the recurrence coefficients in the relation
\[
x\psi_k(x) = \beta_k \psi_{k+1}(x) + \alpha_k \psi_k(x) + \gamma_k \psi_{k-1}(x), \quad k = 0, 1, \ldots,
\]
\[
\psi_{-1}(x) \equiv 0, \quad \psi_0(x) \equiv 1,
\]

under the assumption that the coefficients \(b_k, a_k, c_k, j = 1, 2, \ldots, N \), for whatever value of \(k \) is required, and the zero-order moments
\[
\nu_j^{(0)} := \int_{l_j}^{u_j} \omega_j(x)\,dx, \quad j = 1, 2, \ldots, N,
\]

are given.

Problems of this type arise, for example, in connection with the numerical solution of large systems of linear equations (see, e.g., Saad [17]), in theoretical chemistry (see, e.g., Wheeler [21]), and of course in the determination of Gaussian quadrature formulae.

We will discuss two classical approaches for generating the recursion coefficients. The first one is based on the fact that the desired coefficients are given by
\[
\alpha_k = \frac{\langle x\psi_k, \psi_k \rangle}{\langle \psi_k, \psi_k \rangle}, \quad k = 0, 1, \ldots,
\]
\[
\gamma_k = \beta_{k-1} \frac{\langle \psi_{k-1}, \psi_k \rangle}{\langle \psi_k, \psi_{k-1} \rangle}, \quad k = 1, 2, \ldots,
\]

where the \(\beta_k \) (\(> 0 \)) are arbitrary. The resulting procedure, alternating recursively between (1.7) and (1.5), is called the Stieltjes procedure [Stieltjes] (for historical remarks, see Gautschi [3, 4]). The Stieltjes procedure will be discussed in §3.1.

Our second approach involves the so-called modified moments
\[
\nu_k := \langle q_k, 1 \rangle = \int_{l_j}^{u_j} q_k(x)\omega(x)\,dx, \quad k = 0, 1, \ldots,
\]

where \(\{q_k\} \) is a given suitable set of polynomials with \(\text{deg} q_k = k \). Two algorithms using the modified moments will be described in §3.2. They are generalizations of one derived by Chebyshev in the case of ordinary moments, i.e.,
ORTHOGONAL POLYNOMIALS

$q_k(x) = x^k$, and are therefore called modified Chebyshev algorithms [modCheb] (for historical remarks, see Gautschi [3, 4]). Both algorithms, basically, obtain the desired recursion coefficients in terms of the Cholesky factor R in the Cholesky decomposition (see, e.g., Golub and Van Loan [12, §4.2.3])

\begin{equation}
M = RR^T
\end{equation}

of the associated Gram matrix $M = [(q_i, q_j)]$. One method [modCheb-Cholesky] computes first the Cholesky decomposition (1.9) and then the coefficients $\beta_k, \alpha_k, \gamma_k$, whereas the other scheme [modChebUpdate] alternates recursively between updating R and computing $\beta_k, \alpha_k, \gamma_k$. We conclude §3 with a simple proof of a determinantial expression, in terms of the Gram matrix M, for the desired coefficients.

All three algorithms have in common the need to compute the inner product $\langle \cdot, \cdot \rangle$ fast and accurately. We will discuss a method for this purpose in §2. In §3.2 we will see that this method, in particular, leads to an attractive algorithm for computing the modified moments (1.8). Finally, a number of examples illustrating the numerical performance of the various methods are given in §4.

2. Evaluation of the inner product

The success of the Stieltjes procedure, as well as the modified Chebyshev algorithms, depends in part on the ability to compute the inner product $\langle \cdot, \cdot \rangle$ fast and accurately. In this section we show how to evaluate $\langle p, 1 \rangle$, say for a polynomial of degree $\leq 2n$, under the given circumstances.

The computation of $\langle p, 1 \rangle$ can be performed effectively using the Gauss quadrature rule corresponding to the weight function ω_j. In view of (1.4), we have to generate the rules

\begin{equation}
\int_{I_j}^u p(x)\omega_j(x) \, dx = v_0^{(j)} \sum_{i=0}^n (v_i^{(j)})^2 p(x_i^{(j)}) , \quad j = 1, 2, \ldots, N.
\end{equation}

We first recall some basic facts on Gauss quadrature. We associate with the weight-function ω_j the tridiagonal matrix (compare (1.2))

\begin{equation}
T_n^{(j)} := \begin{pmatrix}
a_0^{(j)} & b_0^{(j)} & & \\
c_1^{(j)} & a_1^{(j)} & b_1^{(j)} & \\
 & \ddots & \ddots & \ddots \\
 & & c_{n-1}^{(j)} & a_{n-1}^{(j)} & b_{n-1}^{(j)} \\
 & & & c_n^{(j)} & a_n^{(j)}
\end{pmatrix}.
\end{equation}

Note that $p_{n+1}^{(j)}$ is, up to the factor $\prod_{i=0}^n (-b_i^{(j)})$, the characteristic polynomial of $T_n^{(j)}$. Hence, as is well known, the nodes $\lambda_i^{(j)}$ of (2.1) are the eigenvalues of $T_n^{(j)}$. If $T_n^{(j)}$ is not symmetric, it can be symmetrized by a diagonal similarity transformation $D_n^{(j)} := \text{diag}(d_0^{(j)}, d_1^{(j)}, \ldots, d_n^{(j)})$, where the diagonal elements
$d_{k}^{(j)}$ are given by
\[d_{k+1}^{(j)} = d_{k}^{(j)} \sqrt{c_{k+1}^{(j)}}/b_{k}^{(j)}, \quad k = 0, 1, \ldots, n-1. \]
Here, $d_{0}^{(j)} (\neq 0)$ is arbitrary. Thus,
\[
J_{n}^{(j)} := (D_{n}^{(j)})^{-1} T_{n}^{(j)} D_{n}^{(j)} = \begin{pmatrix}
\hat{b}_{0}^{(j)} & \hat{b}_{1}^{(j)} & \ldots & \hat{b}_{n-2}^{(j)} & \hat{b}_{n-1}^{(j)} \\
a_{0}^{(j)} & a_{1}^{(j)} & \ldots & a_{n-1}^{(j)} & a_{n}^{(j)}
\end{pmatrix},
\]
where $\hat{b}_{k}^{(j)} = \sqrt{b_{k}^{(j)} c_{k+1}^{(j)}}$, $k = 0, 1, \ldots, n-1$. We refer to $J_{n}^{(j)}$ as the (nth) Jacobi matrix of ω_{j}. The polynomials $\hat{p}_{k}^{(j)}$ corresponding to $J_{n}^{(j)}$ are related to $p_{k}^{(j)}$ by $\hat{p}_{k}^{(j)} = p_{k}^{(j)}/d_{k}^{(j)}$. Hence, if we choose the free parameter $d_{0}^{(j)}$ to be equal to $\sqrt{\nu_{0}^{(j)}}$, the resulting polynomials $\hat{p}_{k}^{(j)}$ are orthonormal with respect to ω_{j}. It is well known (see, e.g., Wilf [22, Chapter 2]) that the weight $\nu_{1}^{(j)}$ in (2.1) is the first component of the normalized eigenvector $\nu_{1}^{(j)}$ of $J_{n}^{(j)}$ corresponding to $\lambda_{1}^{(j)}$.

(2.4) \[J_{n}^{(j)} \nu_{i}^{(j)} = \lambda_{i}^{(j)} \nu_{i}^{(j)}, \quad (\nu_{i}^{(j)})^{T} \nu_{i}^{(j)} = 1, \quad i = 0, 1, \ldots, n. \]

In principle, we could compute $\lambda_{i}^{(j)}$, $\nu_{i}^{(j)}$ using one of the standard methods for calculating eigenvalues and eigenvectors (see, e.g., Golub and Welsch [11]). Fortunately, we do not need to know them explicitly. Since $J_{n}^{(j)}$ is Hermitian, there exists a unitary matrix $U_{n}^{(j)}$ with
\[
(U_{n}^{(j)})^{-1} J_{n}^{(j)} U_{n}^{(j)} = (U_{n}^{(j)})^{T} J_{n}^{(j)} U_{n}^{(j)} = \text{diag}(\lambda_{0}^{(j)}, \lambda_{1}^{(j)}, \ldots, \lambda_{n}^{(j)}) \quad (=: \Sigma_{n}^{(j)}),
\]
where each column $\nu_{i}^{(j)}$ of $U_{n}^{(j)}$ is a normalized eigenvector of $J_{n}^{(j)}$. Therefore, we have by (2.5), (2.1), and (1.4),
\[
\sum_{j=1}^{N} e_{j} \nu_{0}^{(j)} e_{1}^{T} p(J_{n}^{(j)}) e_{1} = \sum_{j=1}^{N} e_{j} \nu_{0}^{(j)} e_{1}^{T} U_{n}^{(j)} p(\Sigma_{n}^{(j)}) U_{n}^{(j)T} e_{1}
\]
\[
= \sum_{j=1}^{N} e_{j} \nu_{0}^{(j)} \sum_{i=0}^{n} (\nu_{i}^{(j)})^{2} p(\lambda_{i}^{(j)})
\]
\[
= \sum_{j=1}^{N} e_{j} \int_{l_{j}} p(x) \omega_{j}(x) dx = \langle p, 1 \rangle,
\]
where $e_{1}^{T} = (1, 0, \ldots, 0)$ denotes the first unit vector. The "method" (2.6) will be frequently used in the following algorithms. It is not surprising, as we will
see in the next sections, that the calculation of \(\langle p, 1 \rangle \) is even more effective, if \(p \) itself fulfills a certain recurrence relation.

3. Algorithms

In the following §§3.1, 3.2 we present a detailed description of the Stieltjes procedure and the modified Chebyshev algorithms.

The procedures compute a system of orthogonal polynomials \(\{\psi_k\}_{k=0}^n \) for the given nonnegative weight function (compare (1.3))

\[
\omega(x) := \sum_{j=1}^{N} \varepsilon_j \mathcal{P}_{[l_j, u_j]}(x) \omega_j(x).
\]

More precisely, the algorithms determine the coefficients in the three-term recurrence relation

\[
\begin{align*}
x \psi_{k+1}(x) &= \beta_k \psi_k(x) + \alpha_k \psi_{k-1}(x), \\
\psi_0(x) &\equiv 1.
\end{align*}
\]

We remark that the system \(\{\psi_k\}_{k=0}^n \) has all of the properties of polynomials orthogonal on one interval, provided we consider \(\psi_k \) orthogonal on \([l, u]\) rather than on \(\bigcup_{j=1}^{N} [l_j, u_j] \). For example, the polynomials \(\psi_k \) have all roots in \([l, u]\), but not necessarily in \(\bigcup_{j=1}^{N} [l_j, u_j] \) (see Example 4.5).

However, we have not yet specified a condition that will uniquely determine the orthogonal polynomials \(\{\psi_k\}_{k=0}^n \). In order to make the computational effort of the various methods comparable, we will devise algorithms that generate the system of orthonormal polynomials \(\{\hat{\psi}_k\}_{k=0}^n \) with respect to \(\omega \). Here we have by (1.4) and (1.6),

\[
\begin{align*}
x \hat{\psi}_{k+1}(x) &= \hat{\beta}_k \hat{\psi}_k(x) + \hat{\alpha}_k \hat{\psi}_{k-1}(x), \\
\hat{\psi}_0(x) &\equiv 1.
\end{align*}
\]

Observe that the corresponding Jacobi matrix is symmetric, and therefore we have

\[
\langle \hat{\psi}_n, \hat{\psi}_n \rangle = \langle \hat{\psi}_{n-1}, \hat{\psi}_{n-1} \rangle = \cdots = \langle \hat{\psi}_0, \hat{\psi}_0 \rangle = 1,
\]

and that \(\hat{\psi}_k \) is related to \(\psi_k \) by

\[
\hat{\psi}_k(x) = (\psi_k, \psi_k)^{-1/2} \psi_k(x).
\]

3.1. Stieltjes procedure

An explicit expression for the coefficients of \(\{\hat{\psi}_k\}_{k=0}^n \) is easily deduced from (1.7) and (3.5). For convenience we set \(\beta_k = 1 \), i.e., \(\psi_k \)
is a monic polynomial, and obtain
\begin{equation}
\hat{\alpha}_k = \alpha_k = \frac{x \psi_k, \psi_k}{\langle \psi_k, \psi_k \rangle}, \quad k = 0, 1, \ldots, n - 1,
\end{equation}
\begin{equation}
\hat{\gamma}_k = \sqrt{\gamma_k} = \left(\frac{\langle \psi_k, \psi_k \rangle}{\langle \psi_{k-1}, \psi_{k-1} \rangle}\right)^{1/2}, \quad k = 1, 2, \ldots, n.
\end{equation}

In order to evaluate the inner products in (3.6) we recursively combine (3.2) and (2.6). Therefore, let

\begin{equation}
\psi_{k+1} := \psi_{k+1}(J_{n}^{(j)}) e_1 = (J_n^{(j)} - \alpha_k I) \psi_k(J_{n}^{(j)}) e_1 - \gamma_k \psi_{k-1}(J_{n}^{(j)}) e_1
\end{equation}

Then
\begin{equation}
\langle \psi_{k+1}, \psi_{k+1} \rangle = \sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} e_1^T \psi_{k+1}(J_{n}^{(j)})^T \psi_{k+1}(J_{n}^{(j)}) e_1 = \sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_{k+1}^{(j)})^T z_{k+1}^{(j)}.
\end{equation}

Altogether, we arrive at:

Stieltjes. Given a set of weight functions \(\omega_j \) and the associated Jacobi matrices \(J_n^{(j)} \) by (2.3) and the moments \(\nu_0^{(j)} \) by (1.6), \(j = 1, 2, \ldots, N \), this algorithm computes the recurrence coefficients of the polynomials \(\psi_k^{(j)}, k = 1, 2, \ldots, n \), orthonormal with respect to \(\omega \).

Initialize. Set \(z_0^{(j)} := e_1, j = 1, 2, \ldots, N \).
- compute \(\hat{\alpha}_0 \) (\(\rightarrow \alpha_0 \)) by (3.6) and (2.6):
\begin{equation}
\alpha_0 = \frac{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_0^{(j)})^T J_n^{(j)} z_0^{(j)}}{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_0^{(j)})^T z_0^{(j)}} = \frac{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} a_0^{(j)}}{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)}}.
\end{equation}
- compute \(z_1^{(j)} := \psi_1(J_{n}^{(j)}) e_1 \) by (3.2) with \(\beta_0 = 1 \):
\begin{equation}
z_1^{(j)} = (J_n^{(j)} - \alpha_0 I) z_0^{(j)}, \quad j = 1, 2, \ldots, N.
\end{equation}

Iterate. For \(k = 1, 2, \ldots, n - 1 \) do
- compute \(\hat{\alpha}_k \) (\(\rightarrow \alpha_k \)) and \(\gamma_k \) by (1.7), (3.6), and (2.6):
\begin{equation}
\alpha_k = \frac{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_k^{(j)})^T J_n^{(j)} z_k^{(j)}}{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_k^{(j)})^T z_k^{(j)}}, \quad \gamma_k = \frac{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_{k-1}^{(j)})^T z_{k-1}^{(j)}}{\sum_{j=1}^{N} \epsilon_j \nu_0^{(j)} (z_{k-1}^{(j)})^T z_{k-1}^{(j)}}.
\end{equation}
- compute \(z_{k+1}^{(j)} := \psi_{k+1}(J_{n}^{(j)}) e_1 \) by (3.2) with \(\beta_k = 1 \):
\begin{equation}z_{k+1}^{(j)} = (J_n^{(j)} - \alpha_k I) z_k^{(j)} - \gamma_k z_{k-1}^{(j)}, \quad j = 1, 2, \ldots, N.
\end{equation}
- compute \(\hat{\gamma}_k \) (\(\rightarrow \gamma_k \)) by (3.6):
\begin{equation}
\gamma_k = \sqrt{\gamma_k}.
\end{equation}
if $k = n - 1$ then

$$
\gamma_n = \left(\frac{\sum_{j=1}^{N} \varepsilon_j \nu_0^{(j)} (z_n^{(j)})^T z_n^{(j)}}{\sum_{j=1}^{N} \varepsilon_j \nu_0^{(j)} (z_n^{(j)})^T z_n^{(j)}} \right)^{1/2}.
$$

End.

Remarks. 1. The algorithm requires $N \Theta((n + 1)^2)$ flops plus n square root computations.

2. The number of recursion coefficients that can be calculated is bounded by the dimension of the Jacobi matrices. In order to compute more coefficients, one has to restart the computation of $z_k^{(j)}$ with appropriate Jacobi matrices.

3. The last $n - k$ elements of $z_k^{(j)}$ are zero. This can be used for designing a more efficient algorithm.

3.2. Modified Chebyshev algorithm. In this section we present two algorithms involving the modified moments

$$
\nu_k := \langle q_k, 1 \rangle = \int_I q_k(x) \omega(x) \, dx, \quad k = 0, 1, \ldots, 2n.
$$

Both algorithms differ from the corresponding algorithm for a single interval, i.e., $N = 1$, only in the computation of ν_k. Therefore, if the ν_k are known analytically, the algorithms for a single and several intervals coincide, i.e., have the same complexity.

However, in general we have to compute the modified moments. Here, we arrive at an efficient algorithm, if we assume that the system of polynomials $\{q_k\}_{k=0}^{2n}$ also satisfies a three-term recurrence relation:

$$
qx_k(x) = b_k q_{k+1}(x) + a_k q_k(x) + c_k q_{k-1}(x),
$$

$$
q_{-1}(x) \equiv 0, \quad q_0(x) \equiv 1.
$$

Using the method (2.6) once more, we obtain:

Modmoment (q_n). Given a set of weight functions ω_j and the associated Jacobi matrices $J_n^{(j)}$ by (2.3) and the moments $\nu_0^{(j)}$ by (1.6), $j = 1, 2, \ldots, N$, and the system of polynomials $\{q_k\}_{k=0}^{2n}$ by (3.8), this algorithm computes the modified moments ν_k, $k = 0, 1, \ldots, 2n$, of ω relative to $\{q_j\}_{j=0}^{2n}$.

Initialize. Set $z_0^{(j)} := e_1$, $z_{-1}^{(j)} \equiv 0$, $j = 1, 2, \ldots, N$, $c_0 := 0$.

- compute ν_0 by (2.6):

$$
\nu_0 = \sum_{j=1}^{N} \varepsilon_j \nu_0^{(j)} e_1^T e_0 = \sum_{j=1}^{N} \varepsilon_j \nu_0^{(j)}.
$$
Iterate. For $k = 1, 2, \ldots, 2n$ do

- compute $z_k^{(j)} := q_k(J_n^{(j)})e_1$ by (3.8):

 $z_k^{(j)} = \frac{1}{b_{k-1}}((J_n^{(j)} - a_{k-1}I)z_{k-1}^{(j)} - c_{k-1}z_{k-2}^{(j)}), \quad j = 1, 2, \ldots, N.$

- compute ν_k by (2.6):

 $\nu_k = \sum_{j=1}^{N} e_j \nu_0^{(j)} e_1^T z_k^{(j)}.$

End.

Remarks. 1. The algorithm requires $N\Theta((n + 1)^2)$ flops.

2. The number of modified moments that can be calculated is bounded by the dimension of the Jacobi matrices. In order to compute more modified moments, one has to restart the computation of $z_k^{(j)}$ with appropriate Jacobi matrices.

3. It is easy to see that the algorithm does not require symmetric Jacobi matrices $J_n^{(j)}$. Instead, one can also use $T_n^{(j)}$, given by (2.2).

4. The last $n-k$ elements of $z_k^{(j)}$ are zero. This can be used for designing a more efficient algorithm.

5. In order to start the algorithm, one has to choose a set of polynomials \{q_k\}$_{i=0}^{2n}$. An obvious choice is $q_k \equiv p_k^{(i)}$, $i \in \{1, 2, \ldots, N\}$. Here (3.7) reduces to

 $\nu_k = \sum_{j=1}^{N} e_j \int_{l_j}^{u_j} p_k^{(i)}(x)\omega_j(x) dx.$

However, we only recommend this choice for $[l_j, u_j] \approx [l, u]$. Otherwise, $p_k^{(i)}$ would in general produce extremely large $|\nu_k|$, owing to the fact that $p_k^{(i)}$ has all its zeros in $[l_j, u_j]$.

We now give a short derivation of the three-term relationship of ψ_k in terms of the Gram matrix associated with q_l and the inner product $\langle \cdot, \cdot \rangle$ (compare Kent [14, Chapter 2]). The Fourier expansion of q_l in terms of ψ_k reads (recall $\langle \psi_k, \psi_k \rangle = 1$)

$$q_l(x) = \sum_{k=0}^{l} r_{ik} \psi_k(x) = \sum_{k=0}^{l} \langle q_l, \psi_k \rangle \psi_k(x), \quad l = 0, 1, \ldots, n,$$

or vice versa,

$$\psi_k(x) = \sum_{m=0}^{k} s_{km} q_m(x), \quad k = 0, 1, \ldots, n.$$

The above equations define the nonsingular and lower triangular matrices $R := [r_{ik}]_{i,k=0}^{l} = [\langle q_l, \psi_k \rangle]_{i,k=0}^{l}$ and $S := [s_{km}]_{k,m=0}^{n}$, with $R = S^{-1}$. Moreover, we
deduce from (3.9) and (3.10)

\begin{equation}
(3.11) \quad r_{lk} = \langle q_l, \psi_k \rangle = \left\langle q_l, \sum_{m=0}^{k} s_{km} q_m \right\rangle = \sum_{m=0}^{k} s_{km} \langle q_l, q_m \rangle.
\end{equation}

Now, consider the associated Gram matrix $M = [(\langle q_l, q_m \rangle)]_{l,m=0}^{n}$. The system of equations (3.11) is equivalent to

\begin{equation}
(3.12) \quad R^T = S M, \quad \text{or} \quad M = R R^T, \quad \text{or} \quad M^{-1} = S^T S.
\end{equation}

Therefore, R is the Cholesky factor of M and S is the inverse Cholesky factor of M.

Substituting (3.10) into (3.3) (resp. (3.9) into (3.8)) and comparing the coefficients of q_{k+1} and q_k (resp. ψ_{k+1} and ψ_k), we obtain

\begin{equation}
(3.13) \quad \hat{\gamma}_{k+1} = b_k \frac{s_{kk}}{s_{k+1,k+1}} = b_k \frac{r_{k+1,k+1}}{r_{kk}}, \quad k = 0, 1, \ldots, n - 1,
\end{equation}

\begin{equation}
\hat{\alpha}_k = a_k + b_{k-1} \frac{s_{k-1,k}}{s_{kk}} - b_k \frac{s_{k+1,k}}{s_{k+1,k+1}} \frac{r_{k-1,k-1}}{r_{kk}} + b_k \frac{r_{k+1,k}}{r_{kk}}, \quad k = 0, 1, \ldots, n - 1.
\end{equation}

Thus the desired coefficients $\hat{\gamma}_k$, $\hat{\alpha}_k$ can be obtained from (3.13) in view of (3.12) by an inverse Cholesky decomposition of M^{-1} (resp. Cholesky decomposition of M), where only the diagonal and subdiagonal elements of S (resp. R) are involved.

3.2.1. Fast Cholesky decomposition

The derivation in the last paragraph leads directly to the following basic algorithm (compare Gautschi [2, §4]):

- build up the Gram matrix M by applying the recursion (3.8);
- compute the Cholesky decomposition $M = R R^T$ (resp. $M^{-1} = S^T S$);
- compute $\hat{\gamma}_k$, $\hat{\alpha}_k$ by (3.13).

Since the Cholesky decomposition of an $(n+1) \times (n+1)$ matrix takes in general $O((n+1)^3)$ arithmetic operations, this algorithm does not compare favorably with the Stieltjes procedure in terms of speed.

One way to overcome this bottleneck is a clever choice of the system of polynomials $\{q_k\}$ which defines the modified moments ν_k. Let

\begin{equation}
(3.14) \quad T_k(x) := \cos(k \arccos(x))
\end{equation}

denote the kth Chebyshev polynomial of the first kind. It is well known that

\begin{equation}
(3.15) \quad T_i(x) T_m(x) = \frac{1}{2} (T_{|i-m|} + T_{i+m}).
\end{equation}

Hence, if we set $q_k = T_k$, the associated Gram matrix reduces to (compare Branders [1, §6.4])

\begin{equation}
(3.16) \quad M = [(T_i, T_m)] = \frac{1}{2} [\nu_{|i-m|} + \nu_{i+m}, 1]
\end{equation}

\begin{equation}
\frac{1}{2} [\nu_{|i-m|} + \nu_{i+m}] = \frac{1}{2} (\mathcal{F} + \mathcal{H}),
\end{equation}
BERND FISCHER AND G. H. GOLUB

where \(\mathcal{T} \) is Toeplitz and \(\mathcal{H} \) is Hankel. This special structure of \(M \) allows the construction of a fast, i.e., \(\mathcal{O}((n+1)^2) \) or less, algorithm for the Cholesky decomposition (see, e.g., Gohberg, Kailath, and Koltracht [10], Heinig, Jankowski, and Rost [13], Lev-Ari and Kailath [15]).

The fast algorithm we used for our computations is based on the following (general) observation. Let \(M \) be a symmetric and positive definite matrix, e.g., \(M \) is a Gram matrix. Notice that the Cholesky decomposition \(M = RR^T \) is nested, i.e.,

\[
M_k = R_k R_k^T, \quad k = 0, 1, \ldots, n,
\]

where \(M_k = [m_{ij}]_{i,j=0}^k \) (resp. \(R_k = [r_{ij}]_{i,j=0}^k \)) denotes the \(k \)th leading principal submatrix of \(M \) (resp. \(R \)). Since the inversion of a lower triangular matrix is also nested, we have from (3.17) that the inverse Cholesky decomposition \(M^{-1} = (R^{-1})^T R^{-1} = S^T S \) is “semi-nested”, i.e.,

\[
M_k^{-1} = S_k^T S_k.
\]

Here \(M_k^{-1} = [u_{ij}^{(k)}]_{i,j=0}^k \) is the inverse of \(M_k \) and \(S_k = [s_{ij}]_{i,j=0}^k \) denotes the \(k \)th leading principal submatrix of \(S \). Assume we have already computed \(S_{k-1} \); then we obtain \(S_k \) by appending one row \(s_k := (s_{k0}, s_{k1}, \ldots, s_{kk}) \) and one column \((0, \ldots, 0, s_{kk})^T\) to \(S_{k-1} \). In view of (3.18), the new elements \(s_{kj} \) are uniquely determined by

\[
s_{kj} s_{kk} = u_{jk}^{(k)}, \quad j = 0, 1, \ldots, k.
\]

Hence, \(S_k^T \) is up to a factor the last column of \(M_k^{-1} \). Therefore, we obtain the inverse Cholesky factor

\[
S_k = \begin{pmatrix}
u_{00}^{(0)} / \sqrt{u_{00}^{(0)}} & u_{01}^{(1)} / \sqrt{u_{11}^{(1)}} & \cdots & u_{0n}^{(n)} / \sqrt{u_{nn}^{(n)}} \\
u_{10}^{(0)} / \sqrt{u_{11}^{(0)}} & u_{11}^{(1)} / \sqrt{u_{11}^{(1)}} & \cdots & u_{1n}^{(n)} / \sqrt{u_{nn}^{(n)}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n0}^{(0)} / \sqrt{u_{nn}^{(0)}} & u_{1n}^{(n)} / \sqrt{u_{nn}^{(n)}} & \cdots & u_{nn}^{(n)} / \sqrt{u_{nn}^{(n)}}
\end{pmatrix}
\]

by solving the linear systems

\[
M_k u^{(k)}_k = \begin{pmatrix}0 \\ \vdots \\ 0 \\ 1\end{pmatrix}, \quad k = 0, 1, \ldots, n,
\]

where \(u^{(k)}_k = (u^{(k)}_{0,k}, u^{(k)}_{1,k}, \ldots, u^{(k)}_{k,k})^T \).

Again, the solution of each linear system (3.21) requires in general \(\mathcal{O}((k+1)^3) \) arithmetic operations. However, if \(M \) is Toeplitz + Hankel, there exist \(\mathcal{O}((n+1)^2) \) algorithms for computing (3.20). They are based on the fact
that the solution of two adjoining sections \(M_{k-1} \) and \(M_k \) are recursively connected. For details we refer to Heinig, Jankowski, and Rost [13, pp. 671-674].

Observe, that we only need to compute the first \(2n + 1 \) modified moments, in order to build up the Gram matrix \(M = \frac{1}{2}[\nu_{|j-m|} + \nu_{j+m}] \). Once we have computed the modified moments and the inverse Cholesky decomposition the desired coefficients are given by (3.13):

\[\text{ModChebCholesky.} \text{ Given a set of weight functions } \omega_j \text{ and the associated Jacobi matrices } J_n^{(j)} \text{ by (2.3) and the moments } \nu_0^{(j)} \text{ by (1.6), } j = 1, 2, \ldots, N, \text{ this algorithm computes the recurrence coefficients of the polynomials } \tilde{\phi}_k, \quad k = 1, 2, \ldots, n, \text{ orthonormal with respect to } \omega. \]

Initialize. Set \(b_{-1} = s_{0,-1} = 0. \)

- compute the modified moments \(\nu_l \) relative to \(T_l \), \(l = 0, 1, \ldots, 2n \), by \(\text{Modmoment}(T_l) \).
- compute the inverse Cholesky factor \(S = [s_{ij}]_{i,j=0}^n \) by (3.20) and (3.21).

Iterate. For \(k = 0, 1, \ldots, n - 1 \) do

- compute \(\tilde{a}_k, \tilde{\phi}_{k+1} \) by (3.13):

\[
\tilde{a}_k = a_k + b_{k-1} \frac{s_{k,k-1}}{s_{k,k}} - b_k \frac{s_{k+1,k}}{s_{k+1,k+1}},
\]
\[
\tilde{\phi}_{k+1} = b_k \frac{s_{kk}}{s_{k+1,k+1}}.
\]

End.

Remarks. 1. The algorithm requires \(N\Theta((n+1)^2) \) flops plus \(n \) square root computations.

2. We only need the diagonal and subdiagonal elements of \(S \) for the computation of the recursion coefficients. However, the recursion formulae for the solutions of (3.21) involve (unfortunately) the whole vector \(u_{k}^{(k)} \).

We conclude this subsection with a more theoretical result. Let

\[
M = [m_{ij}]_{i,j=0}^n, \quad \langle q_i, q_j \rangle_{l, j=0}^n
\]

denote once again the Gram matrix associated with \(\{q_i\} \), and let \(M_k \) be the \(k \)th leading principal submatrix of \(M \). Furthermore let \(D_k := \det(M_k) \) designate the \(k \)th principal minor of \(M \), while

\[
(3.22) \quad \tilde{D}_k := \det \begin{pmatrix}
 m_{00} & m_{01} & \cdots & m_{0,k-2} & m_{0k} \\
 m_{10} & m_{11} & \cdots & m_{1,k-2} & m_{1k} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 m_{k-1,0} & m_{k-1,1} & \cdots & m_{k-1,k-2} & m_{k-1,k}
\end{pmatrix}
\]

\[\text{Equations (5.6) and (5.8) in [13] are misprinted: The formulae for } \beta_{2m} \text{ should read } \beta_{2m} = (J_{2m+1})^T x_{2m+1} - \cos \frac{m+1}{2} \pi \text{ and } \beta_{2m} = \lambda_{m+1} / \alpha_m - \lambda_m / \alpha_{m-1}, \text{ respectively.}\]
is obtained by deleting the last row and \((k - 1)\)st column of \(D_k\). By applying Cramer's rule to (3.21), we easily deduce from (3.19) and (3.13), with the convention \(D_{-1} = 1, D_0 = 0\), that

\[
\hat{\alpha}_k = a_k - b_k D_k^{-1} \hat{D}_k + b_k D_k^{-1} \hat{D}_{k+1},
\]

(3.23)

\[
\hat{\gamma}_{k+1} = b_k \sqrt{D_k^{-1} D_{k+1}},
\]

For the special case of ordinary moments \(q_k(x) \equiv x^k\), i.e., \(b_k = 1, a_k = c_k = 0\), we recover the well-known relationships

\[
\hat{\alpha}_k = -\frac{\hat{D}_k}{D_{k-1}} + \frac{\hat{D}_{k+1}}{D_k},
\]

(3.24)

\[
\hat{\gamma}_{k+1} = \frac{\sqrt{D_{k-1} D_{k+1}}}{D_k},
\]

In other words, the computation of \(\hat{\alpha}_k, \hat{\gamma}_{k+1}\), using the equation (3.23), is nothing but an (expensive) implementation of a modified Chebyshev algorithm.

However, since the condition number of \(M\) depends in part on the polynomial system \(\{q_j\}\), a clever choice of this system will improve a test, based on (3.24), for the validation of Gaussian quadrature formulae, proposed by Gautschi [5, pp. 214–215].

3.2.2. Updating the mixed moment matrix.

The next (fast) algorithm computes the desired coefficients in terms of the Cholesky factor \(R\), which is essentially a "mixed moment" matrix (compare (3.9))

\[
R = [r_{lk}] = [\langle q_l, \psi_k \rangle].
\]

(3.25)

Instead of explicitly computing the Cholesky decomposition, we update \(R\) continually as the process unfolds (compare Gautschi [8, §5.4], Sack and Donovan [18], Wheeler [20]). The key equation is easily obtained from the two recurrence relations (3.3) and (3.8):

\[
r_{lk} = \langle q_l, \psi_k \rangle = \frac{1}{\hat{\gamma}_k} (\langle x q_l, \psi_{k-1} \rangle - \hat{\alpha}_{k-1} r_{l,k-1} - \hat{\gamma}_{k-1} r_{l,k-2})
\]

(3.26)

\[
= \frac{1}{\hat{\gamma}_k} (b_l r_{l+1,k-1} + (a_l - \hat{\alpha}_{k-1}) r_{l,k-1} + c_l r_{l-1,k-1} - \hat{\gamma}_{k-1} r_{l,k-2}).
\]

This equation combined with (3.13) almost furnishes the algorithm. Since \(\hat{\gamma}_k\) is defined in terms of \(r_{kk}\), we slightly have to change (3.26) for \(l = k\) and finally obtain:

\textbf{ModChebUpdate} \((q_n)\). Given a set of weight functions \(\omega_j\) and the associated Jacobi matrices \(J_n^{(j)}\) by (2.3), the moments \(\nu_n^{(j)}\) by (1.6), \(j = 1, 2, \ldots, N\),
and the system of polynomials \(\{q_l\}_{l=0}^{2n} \) by (3.8), this algorithm computes the
recurrence coefficients of the polynomials \(\hat{p}_k, \ k = 1, 2, \ldots, n \), orthonormal
with respect to \(\omega \).

Initialize. Set \(\hat{\gamma}_0 = 0 \) and \(r_{l,-1} = 0, \ l = 1, \ldots, 2n-1 \).

- compute the modified moments \(\nu_l \) relative to \(q_l, \ l = 0, 1, \ldots, 2n \),
by \(\text{Modmoment}(q_l) \).
- compute \(\hat{\psi}_0 \) by (3.3):
\[
\hat{\psi}_0 = \left(\sum_{j=1}^{N} e_j \nu_0^{(j)} \right)^{-1/2}
\]
- compute \(r_{l0} \) by (3.25):
\[
r_{l0} = (q_l, \hat{\psi}_0) = \hat{\psi}_0 \nu_l, \quad l = 0, \ldots, 2n-1.
\]
- compute \(\hat{\alpha}_0 \) by (3.13):
\[
\hat{\alpha}_0 = a_0 + b_0 r_{l0}^0.
\]

Iterate. For \(k = 1, 2, \ldots, n \) do

- compute \(r_{kk} \) by (3.26) and (3.13):
\[
r_{kk} = \left(\frac{r_{k-1,k-1}}{b_{k-1}} [b_k r_{k+1,k-1} + (a_k - \hat{\alpha}_{k-1}) r_{k,k-1}
\right.
\[
+ c_k r_{k-1,k-1} - \hat{\gamma}_{k-1} r_{k,k-2}) \right)^{1/2}.
\]
- compute \(\hat{\gamma}_k \) by (3.13):
\[
\hat{\gamma}_k = b_{k-1} \frac{r_{kk}}{r_{k-1,k-1}}.
\]
if \(k < n \) then for \(l = k+1, k+2, \ldots, 2n-k \) do

- compute \(r_{lk} \) by (3.26):
\[
r_{lk} = \frac{1}{r_k} (b_l r_{l+1,k-1} + (a_l - \hat{\alpha}_{k-1}) r_{l,k-1} + c_l r_{l-1,k-1} - \hat{\gamma}_{k-1} r_{l,k-2}).
\]
- compute \(\hat{\alpha}_k \) by (3.13):
\[
\hat{\alpha}_k = a_k - b_{k-1} \frac{r_{k,k-1}}{r_{k-1,k-1}} + b_k \frac{r_{k+1,k}}{r_{kk}}.
\]

End.
Remarks. 1. The algorithm requires $N((n+1)^2)$ flops plus n square root computations.

2. It is well known (see, e.g., Gautschi [9]), that the choice of the system $\{q_i\}$ affects the condition of the nonlinear map from the modified moments to the recursion coefficients.

4. Examples

The purpose of this section is to illustrate the numerical performance of the three algorithms. All computations were carried out on a SUN 3/50 in double precision (approx. 15 significant decimal places).

As we will see, because of roundoff errors, the algorithms do not always produce the same numbers. How do we decide which numbers are the right ones? The most obvious test—using the associated Gauss quadrature rule for checking the orthonormality of the computed polynomials—is not without difficulties (compare Gautschi [5]). Therefore, we transcribed one algorithm also into MATHEMATICA and used high-precision arithmetic.

In all examples we have computed the orthonormal polynomials, more precisely the three-term recurrence coefficients, up to degree 50. For every algorithm we have compared the FORTRAN double-precision results with the MATHEMATICA results obtained by using 100 significant digits. In the corresponding tables we have listed the maximum polynomial degree for which the relative deviation of these two results is less than 10^{-14}. We only consider the case of two intervals, since the extension to more intervals does not produce any additional difficulties.

Example 4.1. Let

$$\omega_1(x) := \mathcal{P}_{\{1, w_1\}}(x), \quad \omega_2(x) := \mathcal{P}_{\{2, w_2\}}(x),$$

and

$$\omega(x) := \omega_1(x) + \omega_2(x).$$

The orthogonal polynomials $p^{(1)}_n, p^{(2)}_n$ with respect to ω_1, ω_2 are the suitable translated Legendre polynomials. The modified moments are based on the Legendre polynomial L_n and on the Chebyshev polynomial of the first kind T_n with respect to the whole interval $[l, u] = [-1, 1]$.

The Stieltjes algorithm works extremely well in all cases; cf. Table 4.1. So do the modified Chebyshev algorithms, as long as the two intervals have at least one point in common. If there is a gap between the intervals, the latter algorithms become severely unstable, compare also Gautschi [4, Example 4.7]. As suggested by Gautschi [8, Example 5.5], one might use in these cases modified moments defined by orthogonal polynomials relative to a weight function which has the same support as ω. Therefore, we introduce the following weight functions,
ORTHOGONAL POLYNOMIALS

725

TABLE 4.1

Performance of the Stieltjes algorithm and the modified Chebyshev algorithms for \(\omega \) given by (4.1)

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>(u_1)</th>
<th>(l_2)</th>
<th>(u_2)</th>
<th>(\text{St.})</th>
<th>(\text{Ch.})</th>
<th>(U(L_n))</th>
<th>(U(T_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>>50</td>
<td>27</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>>50</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>>50</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>>50</td>
<td>46</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.3</td>
<td>1.0</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.5</td>
<td>1.0</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.5</td>
<td>-0.7</td>
<td>1.0</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.0</td>
<td>-0.7</td>
<td>0.5</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.0</td>
<td>-1.0</td>
<td>0.8</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.0</td>
<td>-1.0</td>
<td>1.0</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
</tbody>
</table>

for \(l_1 < u_1 < l_2 < u_2 \),

(4.2)

\[
\omega^{u_1}(x) = \begin{cases}
\frac{|u_1 - x|}{\sqrt{(l_1 - x)(u_1 - x)(l_2 - x)(u_2 - x)}} & \text{for } x \in [l_1, u_1] \cup [l_2, u_2], \\
0 & \text{otherwise},
\end{cases}
\]

\(\omega^{l_2}(x) = \begin{cases}
\frac{|l_2 - x|}{\sqrt{(l_1 - x)(u_1 - x)(l_2 - x)(u_2 - x)}} & \text{for } x \in [l_1, u_1] \cup [l_2, u_2], \\
0 & \text{otherwise}.
\end{cases} \)

The weight functions \(\omega^{u_1} \) and \(\omega^{l_2} \) may be viewed as generalizations onto two intervals of the ordinary Chebyshev weight function. The associated orthogonal polynomials \(P_n^{u_1} \), \(P_n^{l_2} \) were studied by Peherstorfer [16]. In particular, he derived a recurrence relation for the three-term recurrence coefficients. Using these polynomials, we obtain Table 4.2.

TABLE 4.2

Performance of the Stieltjes algorithm and the modified Chebyshev algorithms for \(\omega \) given by (4.1)

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>(u_1)</th>
<th>(l_2)</th>
<th>(u_2)</th>
<th>(\text{St.})</th>
<th>(\text{Ch.})</th>
<th>(U(P_n^{u_1}))</th>
<th>(U(P_n^{l_2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>>50</td>
<td>27</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>>50</td>
<td>8</td>
<td>>50</td>
<td>42</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>>50</td>
<td>4</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>>50</td>
<td>46</td>
<td>>50</td>
<td>>50</td>
</tr>
</tbody>
</table>

Now the performance of \texttt{modChebUpdate} is indeed better, but in general not as good as Stieltjes.
The next computations are based on a different representation of ω. For $l_1 < u_1 < l_2 < u_2$ we have

$$\omega(x) = \mathcal{H}_{[l_1, u_1]}(x) + \mathcal{H}_{[l_2, u_2]}(x) = \mathcal{H}_{[l_1, u_2]}(x) - \mathcal{H}_{[u_1, l_2]}(x).$$

Using the second representation (4.3) of ω we obtain Table 4.3.

As one might expect, here all algorithms tend to be unstable. It seems that this approach is only of academic interest.

Example 4.2. Let $c_1 := (l_1 + u_1)/2$ and $d_1 := (u_1 - l_1)/2$. Define the weight functions $\omega_1(x) := \left[d_1^2 - (x - c_1)^2\right]^{-1/2} \mathcal{H}_{[l_1, u_1]}(x)$, $\omega_2(x) := \mathcal{H}_{[l_2, u_2]}(x)$, and

$$p_n^{(1)}$$

is now a suitably scaled **Chebyshev polynomial of the first kind**. Although ω_1 and ω_2 have a "different nature", the algorithms have the same qualitative behavior as in Example 4.1, see Table 4.4; compare also Gautschi [4, Example 4.9].

Table 4.4

Performance of the Stieltjes algorithm and the modified Chebyshev algorithms for ω given by (4.4)
Example 4.3. Let $c_i := (l_i + u_i)/2$, $d_i := (u_i - l_i)/2$, and $\omega_i(x) := [d_i^2 - (x - c_i)^2]^{-1/2} \varphi_{[l_i, u_i]}(x)$, $i = 1, 2$. The polynomials ψ_n that are orthogonal in $[l_1, u_1] \cup [l_2, u_2]$ with respect to the weight function

(4.5) $\omega(x) = \omega_1(x) + \omega_2(x)$

were studied by Saad [17], for $l_1 < u_1 < l_2 < u_2$, in connection with the solution of indefinite linear systems. He derived a method for computing these polynomials by exploiting properties of Chebyshev polynomials.

Note that the orthogonal polynomials ψ_n are also of interest in Gaussian quadrature. Here, one has now the possibility to deal in a closed form with functions having a singularity in the interior of a given interval $[l, u]$, e.g., $l = l_1 < u_1 = l_2 < u_2 = u$.

Again, the Stieltjes algorithm as well as the modified Chebyshev algorithms behave as in the previous examples; cf. Table 4.5.

| Table 4.5 |
| Performance of the Stieltjes algorithm and the modified Chebyshev algorithms for ω given by (4.5) |

<table>
<thead>
<tr>
<th>l_1</th>
<th>u_1</th>
<th>l_2</th>
<th>u_2</th>
<th>modCheb</th>
</tr>
</thead>
</table>
| $|_{\omega_i}(x) := \omega_i(x) + \omega^L(x)$, where ω^L and ω^L are defined by (4.2). We have

(4.6) $\omega(x) = \left\{ \begin{array}{ll} \frac{|x - (u_1 + l_2)/2|}{2\sqrt{(l_i - x)(u_1 - x)(l_2 - x)(u_2 - x)}} & \text{for } x \in [l_1, u_1] \cup [l_2, u_2], \\ 0 & \text{otherwise.} \end{array} \right.$

The symmetric case $l_1 = -u_2$ and $u_1 = -l_2$ is of interest in the diatomic linear chain (Wheeler [21]). This special case has been studied also by Gautschi [6]. He computed the three-term recurrence coefficients in closed form.

However, for the general case we obtain Table 4.6.
Table 4.6

Performance of the Stieltjes algorithm and the modified Chebyshev algorithms for \(\omega \) given by (4.6)

<table>
<thead>
<tr>
<th>(l_1)</th>
<th>(u_1)</th>
<th>(l_2)</th>
<th>(u_2)</th>
<th>(\text{St.})</th>
<th>(\text{Ch.})</th>
<th>(U_*(I_n))</th>
<th>(U_*(P_n^{l_1}))</th>
<th>(U_*(P_n^{l_2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>>50</td>
<td>35</td>
<td>33</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>>50</td>
<td>10</td>
<td>9</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>-1.0</td>
<td>-0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
<td>>50</td>
</tr>
</tbody>
</table>

As long as the gap between the two intervals is not too big, the Stieltjes algorithm and the modified Chebyshev algorithm based on the orthogonal polynomials with respect to \(\omega^{l_1} \) and \(\omega^{l_2} \) perform very well.

Example 4.5. Let

(4.7) \(\omega(x) := \omega_1(x) + \omega_2(x) = \begin{cases}
1 & \text{for } x \in [-1.0, -0.4] \cup [0.6, 1.0], \\
0 & \text{otherwise}.
\end{cases} \)

Figure 4.7 shows the corresponding orthonormal polynomials of degree 2 (dotted curve), 3 (continuous curve), 4 (dashed curve), and 5 (dash-dotted curve).
Here, the orthonormal polynomial of degree 3 has a zero in the gap \([-0.4, 0.6]\). However, it is easy to show that orthogonal polynomials on two disjoint intervals have at most one zero in the gap (see, e.g., Szegö [19, p. 50]).

CONCLUSIONS

The Stieltjes algorithm seems to be the method of choice for generating orthonormal polynomials over several intervals in the circumstances considered here. It is stable in almost every case and, unlike in the usual situation, the computation of the inner products is relatively simple. But, if the map from the modified moments to the recurrence coefficients is well-conditioned, one can also choose one of the algorithms based on modified moments. They are in particular attractive when the required modified moments are known analytically. In this case the complexity of these algorithms does not depend on the number of underlying intervals.

The Stieltjes algorithm as well as the algorithm for computing the modified moments is straightforward to parallelize.

ACKNOWLEDGMENT

We would like to thank George Cybenko for providing us with his MATLAB program for the Cholesky decomposition of a Toeplitz plus Hankel Matrix. The first author would like to thank Mark Kent for several helpful discussions, and he would like to thank the Department of Computer Science at the Stanford University for offering warm hospitality during his visit during the 1988–89 academic year.

BIBLIOGRAPHY

