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A PRECISE CALCULATION OF THE FEIGENBAUM CONSTANTS

KEITH BRIGGS

Abstract. The Feigenbaum constants arise in the theory of iteration of real

functions. We calculate here to high precision the constants a and S associated

with period-doubling bifurcations for maps with a single maximum of order z ,

for 2 < z < 12. Multiple-precision floating-point techniques are used to find

a solution of Feigenbaum's functional equation, and hence the constants.

1. History

Consider the iteration of the function

(1) fßZ(x) = l-p\x\z,        z>0;

that is, the sequence

(2) *(+i =/„,*(*/)>    i'=l,2,...;        x0 = 0.

In 1979 Feigenbaum [8] observed that there exist bifurcations in the set of

limit points of (2) (that is, in the set of all points which are the limit of some

infinite subsequence) as the parameter p is increased for fixed z. Roughly

speaking, if the sequence (2) is asymptotically periodic with period p for a

particular parameter value p (that is, there exists a stable p-cycle), then as p

is increased, the period will be observed to double, so that a stable 2/>cycle

appears. We denote the critical /¿-value at which the 2J cycle first appears by

Pj.
Feigenbaum also conjectured that there exist certain "universal" scaling con-

stants associated with these bifurcations. Specifically,

(3) «5  = lim ZlZJhzi
7-00 pJ+x - ftj

exists, and ô2 is about 4.669. Similarly, if rf. is the value of the nearest cycle

element to 0 in the 2J cycle, then

(4) az = lim y-
;-oo dJ+x

exists, and a2 is about -2.503 .
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The conjecture for the case z = 2 was proven by Lanford in 1982 [11], and

for z < 14 by Epstein in 1985 [7].

Some numerical results in the literature are given in Table 1. (Note that most

authors quote \a\.)

Table 1

Reference

m
[9]
[4]

[13]

[5]

2 -2.502907876
2 2.50290787509589284
2 2.502907875095892822283902873

2 2.5029078
4 1.690
6 1.467
8 1.358

10 1.292

2 2.50
3 1.93
4 1.69
5 1.56
7 1.41

10 1.29

4.6692
4.6692016091029909
4.6692016091029906718532038

4.6692016
7.29
9.30

10.948
12.37

4.67
6.08
7.29
8.35

10.2
12.3

Some examples of physical systems in which a and ô are relevant are de-

scribed in [2]. Despite the theoretical and applied interest of these numbers,

little is known about them, for example whether they satisfy any simple alge-

braic relations. On the question of the limits as z tends to oo of az and <5z,

see [6].

We propose here to evaluate a and ô to high precision for various z, in

order to provide data for testing conjectures concerning these numbers.

2. Method

Calculating ô directly from the definition is impractical because it would

involve finding high iterates of /, which are subject to accumulation of roundoff

error, making it difficult to locate the bifurcation values u. accurately.

A practical algorithm for ô was described in [3]. However, this is suitable

for low precision only, owing to its slow convergence. Another method for Ö

was proposed in [12], but has the same drawback. It seems that the original

method of Feigenbaum [8] is still the best when high precision is desired. We

briefly describe this method, which is justified in [8].

One defines an operator T, acting on functions g : R -» E, by

(5) [Tg](x) = {g(g(g(l)x))}/g(\).
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If we find an even real analytic function invariant under T, with g(0) = 1,

then a is determined by a = l/g(l).

The numerical method proceeds by approximating g by the form

(6) g(x) = l+J2gj\x\
i=i

An approximate fixed point of T can then be found by a collocation method.

We require (5) to be satisfied at n points x¡ in the interval (0, 1], and solve

the resulting n nonlinear equations by an «-dimensional Newton iteration.

Thus we require (for j = 1, ... , n)

i+X>/ h + EW'
(7)

;=1 (=1

»-Eft
i=i

i+5>
i=i

i+E^U
!=1

If we call the left side of this equation f,, the Newton iteration requires the

inversion of the Jacobian matrix df/dg¡. This is the major part of the com-

putational task. For the smaller z-values, it was found that the initial approx-

imation to the ^-coefficients was not critical, but for the larger z-values some

trial and error was necessary before convergence was obtained. For z greater

than 12, all initial approximations tried produced divergence of the Newton

iteration. However, it is probable that a solution to (7) does exist for all z .

Feigenbaum has shown [8] that the constant Sz is the largest eigenvalue of

the local linearization of T about the fixed point function g found above. A

simple calculation shows that this operator L is given by

(8) [Lf](x) = -af(g(x/a)) - ag'(g(x/a))f(x/a).

Once the approximate fixed point g has been found, one may construct a finite-

dimensional matrix approximating L by a method similar to that used above.

That is, one evaluates the right side of (8) at the n nodes x¡. The largest

eigenvalue of the matrix can then easily be found by the power method [10,

§7.3].

3. Results

We have implemented the above scheme with arbitrary-precision floating-

point arithmetic, using the methods described by Brent [1]. The choice of the

points x¡ was found to be not critical, linear spacing being adequate for small

z. However, the nonlinear spacing x¡ = (i/n)x/z (i = 1, ... , n) produced

more stable results for the higher z-values, and was therefore used for all the
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results quoted. It is observed that the ^-coefficients decrease rapidly in magni-

tude; for example for z = 2, \g¡\ is about 10-'. This gives a guide to the value

of n needed; since a is l/g(l),we must set n about equal to the number of

decimals desired for a, and preferably greater. We first found a and ô for

z = 2, ... , 12 with n = 75 and a working precision of 150 decimal places.

We then repeated all calculations with n = 100 and a working precision of

200 decimal places. The results given in Table 2 show as many digits as agree

between the two calculations. Thus, it is probable that all quoted digits are

correct.

Table 2

Feigenbaum 's a and ô for z = 2,3,... ,12

a2 -2.50290787509589282228 3902873218 2157863812 7137672714
9977336192 0567792354 6317959020 6703299649 7464338341
29595232

S2 4.66920160910299067185 3203820466 20161725818557747576
8632745651 3430041343 3021131473 71387

a3 -1.9276909638 4764084494 9994352966 3190518926 5896703673
2620743579 6727408667 7490009

<53  5.9679687037 7745104099 4193019979 6723235126 0291982742
3948393172 0

a4 -1.69030297140524485334 3780150324 1613482282 7805970956
1966682423 263

<54  7.284686217073343364308930567995 55306947804661979979
065907212

q5 -1.555771250196518402132978629657 4844101923 2289917422
9329

<55  8.3494991320669635211097474018112355832574 76

a6   -1.46774245031990094445 3834315108 9737463687 971293967
<56  9.2962468327 7137008283 4476566367 4575503066 88756

a7 -1.4051107883 16831799425671289266 79825719406757
c57 10.2221595288 3488165524 1801329347 44

a8 -1.3580172791 3805034548 7376333106 26140065806
<5g 10.94862426594159042553 4207900712 234803

q9 -1.321185759805252766782332645011 12163344
<59 11.7683336395 5408532268 157502

q10 -1.291516867262344569625592342901483728

Sx0   12.34140904534929383969 7630423331

a,, -1.267061407902472463290059733681 36867

c5n 13.0765458056 5116239270 558

q12 -1.246527751720749295439806587251 9
<5I2 13.5350756661 702764957005633538
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