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SHAPE-PRESERVING C2 CUBIC POLYNOMIAL
INTERPOLATING SPLINES

J. C. FIOROT AND J. TABKA

Abstract. In this paper we propose a method to construct shape-preserving

C cubic polynomial splines interpolating convex and/or monotonie data. For

such given data, the existence or nonexistence of such interpolating splines can

be expressed in terms of existence or nonexistence of solutions for a system of

linear inequalities in two unknowns.

0. Introduction

In many interpolation problems it is important that the solution preserves

some shape properties such as convexity or monotonicity. Classical methods

(the polynomial spline functions being the most widely used) usually ignore

these kinds of conditions and thus yield solutions exhibiting undesirable inflec-

tions or oscillations. This is the reason why many investigations during the last

years have been directed towards interpolation by means of shape-preserving

polynomial spline functions.

In [6] McAllister and Roulier, and in [13] Schumaker, have studied quadratic

splines which preserve monotonicity and convexity. In [5] Fritsch and Carlson

have studied cubic splines that preserve monotonicity. In [1, 2] Costantini

and Morandi have studied cubic splines which preserve both convexity and

monotonicity. All of these splines are C1.

Other authors (Neuman [10, 11] and Mettke [9]) have imposed additional

conditions on the monotone, convex data, which yield a solution that belongs

to a subspace of polynomial splines. Moreover, McAllister and Roulier [7], and

Passow and Roulier [12] have shown that it may be impossible to construct

monotonie and convex splines of given degree and deficiency. In [8] Medina

gives a survey on shape-preserving interpolation by means of polynomial or of

other classes of splines.

In this paper we propose a method to construct C cubic polynomial in-

terpolation splines. Functions of this kind, of course, do not always exist for

arbitrary convex monotone data sets. For convex increasing data—this, as we
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shall see later, does not limit generality—the existence or nonexistence of such

a C cubic polynomial interpolation spline can be expressed in terms of the

existence or nonexistence of solutions for a system of linear inequalities in two

unknowns.

1. Notation and definitions

Let J = {0, 1,...,« - 1} and K = {1, 2, ... , n - 1}. Suppose a =

x0 < xx < x2 < ■ ■ ■ < xnX < xn = b is a partition of [a, b], and suppose

that y0, yx, ... , yn are n + X real numbers. Let f = [x¡, xi+x] for i e J,

A, = (yM -y,)/(xi+l -xt) for i € /, h, = xl+x -xi for ieJ, and xM/3 =

xi -\-hJ3, x(+2,3 = x¡ + 2h¡/3 for i e J .

Given the set of points Af;, with M¡ = (x¡, v) for i = 0, X, ... , n , we say

that:

(a) the data are increasing (resp. decreasing) if and only if

y0<yi<y2<---<yn-i<yn   (resp. y0 > yx > ■ ■ ■ > yn) ;

(b) the data are convex (resp. concave) if and only if

A0 < A, < • • • < An_2 < A„_,    (resp. A0 > A, > • ■ • > An_x).

2. The problem

For clarity we shall assume that the data are convex and increasing, and we

shall try to find a degree-3 polynomial spline function, denoted by s, of class

C2[a, b], interpolating the points M(, i = 0, X, ... , n, and preserving the

shape of the data.

These conditions are expressed as follows:

(i) for i £ J and x e f , s(x) = P¡(x), where P{ is a degree-3 polynomial;

(ii) s(x0) = P0(x0) = y0; for  i e K,  s(xt) = P,_x(xt) = Pt(xt) = y,;

s(xn) = Pn_x(xn) =yn ;

(Hi) for ieK, ^_1(x/) = ^(ac/), P"_x(x0 = P'¡(x0;

(iv) for i £ J and x 6 /,, P-(x) > 0 and P"(x) > 0.

In §3 a solution satisfying conditions (i)-(iv) is constructed. The construc-

tion is simplified when the data are only increasing (resp. only convex), since

in this case, in (iv), only the condition of positivity of the first (resp. the sec-

ond) derivative is required. Of course, by symmetry the case of concave and

decreasing (resp. only decreasing or only concave) data is treated in the same

way. One simply changes the sign in (iv).

3. The proposed solution

3.1. Let y/+1;3, yi+2/3 ' i G •/ , be 2« real numbers, and

W = Tj^¡{yÁxi+i - *)3 + 3>Vn/3v*/+i - x)2(* - *,■)

+3yi+2/3v*/+i - x)(x - xf + yi+x(x - xf}    fOTX£[XltX,+l].
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By construction, 5 satisfies (i) and (ii). For further use, we give the following

first and second derivatives:

p'i(x) = 7j{(>Vi/3 - yM+i - xf + 2(^+2/3 - y,+i/3)(xi+i - *)(* - xi)

+(yl+l-yl+2p)(x-xi)2}>

P'l'{x) = 7h-f^yi+2ß-2yi+iß+yi)(xi+i -x)+(yl+i-2yl+2ß+y1+ip)(x-xi)}-

Theorem 1. The function s, defined by

s(x) = P¿(x)   for i € J andx£l¿,

satisfies (iv) if and only if the following conditions hold:

(0 yi<yMß<yi+2ß<yi+l,     i£J,

,~,        y¡+i/3~y¡   yi+2/3~y¡+i¡3   y¡+i ~yi+2ß      .   r

Xi+l/3 ~ Xi       Xi+2/3 _ Xi+l/3       Xi+l ~ Xi+2/3

Proof. Suppose that conditions (1) and (2) hold. Obviously, Pt(x>) = yi and

Pi(xi+i) = yi+x ■ It is furthermore known (Davis [3, pp. 114-115]), or can easily

be verified using the expressions of P\ and P" given in 3.3, that P¡ satisfies

the following properties: for all xelt, P[(x) > 0 (by (1)) and P['(x) > 0 (by

(2)).
Conversely, assume Pi convex and increasing for i £ J. This implies, in

particular, that the first and second derivatives of Pi at xi and xi x are positive

for i £ J. Conditions ^"(x() > 0 for i £ J, and P"(xi+X) > 0 for i £ J

read:

(a)  yi+2ß-2yi+iß+yi^° and ^i+i-^/s+^+i/s^0 for/e/.

Similarly, conditions -?,'(.*,■) > 0 for i £ J , and P-(xi+x) > 0 for i £ J read:

(ß) yi+y3-y¡>0 and yM-yM/3>0 forje/.

One can easily check that conditions (a) and (/?) imply (1) and (2).   G

Thus, solving our problem is equivalent to finding 2« real numbers yi+x,3,

yi+2p satisfying ( 1 ) and (2) and ensuring, in addition, the continuity of the first

and second derivatives at the nodes x¡, i £ K .

3.2. To simplify, set for i £ J,

. _yj+iß-y, _,yl+iß-yj

'' ~x       -x h
Ai+l/3     Ai "i

, _ y¡+2/3 ~^/+l/3  _ -,^+2/3 ~ ^1+1/3

Ai+2/3      xi+lß "i

,     _ y¡+i ~y¡+2/3 _ ~y¡+i ~y¡+2/3

"í+2/3 - x       - x h
■*;+!       A j+2/3 "i
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Then we have

(3) di + di+xß + di+2ß = 3Ai,        i£j.

We now rewrite conditions ( 1 ) and (2), using d¡, 4+1/3, 4+2/3, i £ J . Then

(1) is equivalent to the following system of 3« inequalities in 3« unknowns:

(1)' dt>0,    di+x/3>0,    di+2/3>0   for i£j,

and (2) is equivalent to the following system of 2« inequalities in 3n un-

knowns:

(2)' 4^4+1/3^4+2/3   fori£j.

Thus, our problem is equivalent to determining {d¡, 4+1/3» 4+2/3}' ,€^

satisfying (1)', (2)', and (3) in such a manner that the continuity of the first

and second derivatives at the nodes is ensured.

3.3. From the expressions of P[ and P" (see 3.1) we obtain

/>;(*,) = 4,    p¡(xl+x) = dl+2/},

2 2
P"(X,) = £-(4+1/3 - 4) ' P"(Xi+l) = ^4+2/3 - 4+./3) •

So, to satisfy the continuity of the first derivative at the nodes, it is necessary

and sufficient to have

(4) 4 = 4-1+2/3   for/eJC.

Similarly, to satisfy the continuity of the second derivative at the nodes, it is

necessary and sufficient to have

4-i+2/3-4-i+i/3 = 4+i/3-4  {0TieK
hi-l hi

In view of (4), it is natural to set dn = 4-1+2/3 •

We have obtained the following theorem.

Theorem 2. To solve the problem of 12, it is necessary and sufficient to determine

{4, 4+1/3' 4+2/3}- i £ J, satisfying the five conditions (X^, (2)', (3), (4),

and (5).

These conditions lead to the following system of linear equations and in-

equalities in 3n unknowns:

( 4>0, 4+1/3>0, 4+2/3>0       for i£j,     (1)'

4 < 4+1/3 ̂  4+2/3 for i£j,     (2)'

4 + 4+1/3 + 4+2/3 = 3A, for i G J »     (3)

4 = 4-1+2/3 for/etf,    (4)
(S)

4+1/3      4 _ 4-1+2/3      4-1 + 1/3

*/ Ki
for 16*.     (5)

In what follows we shall denote h¡h¡ x/(h¡ + h¡+]) by Hj.
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3.4. Let us rewrite this system, modifying (2)', (3), and (5) according to (4):

( 4 > 0, 4+1/3 > 0, 4+2/3 > 0   for / 6 /,     (1)'

4 < 4+1/3 ̂ 4+i for/e/,     (2)"

4 + 4+1/3 + 4+1 = 3A; for/6/,    (3)'

4 = 4-1+2/3' fori£K,    (4)

4 = ",-,píf+ ^)    to. € if.    (5)'

In view of (4), the inequalities (1)', (2)" together are equivalent to

(6)    o < 4 < d0+xß < 4 < 4+1/3 < 4 < • ■ • < dn_x < 4_1+1/3 < dn.

Given that the quantities 4+1/3 and 4-1+1/3 are positive and, by (5)', d¡

is a weighted average of them, 4 is necessarily included between these two

numbers, and inequalities (6) can be written more simply as

(i)        0 < 4 < 4+1/3 < 4+1/3 <    < dn_2+l/3 < 4,_1+1/3 < 4.

System (S) now reads as follows:

C 0 < 4 < úf0+1/3 < 4+2/3 < • • • < 4_2+1/3 < 4_,+1/3 < 4.  (!)

for/6/, (3)'

for 1 6 *, (4)

4 + 4+1/3 + 4+1 = 3A,.

4 = 4-1+2/3

J u I  4+1/3    ,    4-1 + 1/3 \        r        ■ r   ISdi = Hi_xl-jJ- + -J-L\    for t£K. (5)'

Using (5)', we express (3)' in the following way:

0+

K
a

4- Ih  -t. H      -1- wu
h(E) <

/0)Î5±lZl + jrY0Î-±lZl = 3A0-./0,
'0 "1

//
'í-l + l/3

i'-l
'i-l

+ (h¡ + //,_, + //,)% + fl;i±i±!fi = 3A„

//,
n-2

'«-2+1/3

'«-2

1 --1+1

for / = 1, 2, ... , n - 2.

+ (hn-i+Hn_2)d-^^ = 3An_x-dn.
nn-l

Finally, (S) is equivalent to the system of linear equations and inequalities

(D,(E),(4), (5)'.

3.5. We now study system (E) of n linear equations in n unknowns 4+1/3 >

i £ J, where d0 and dn are parameters in the right-hand side. In terms of

the unknowns Di = d¡+l/3/hi, the corresponding matrix, denoted by H, can
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be written as follows:

fh0 + HQ H(

H0 ¥Hl+Hx      Hx

Hn-3   hn_2 + Hn_3 + Hn_2 Hn_2

V Hn_2 hn_x+Hn_2J

This is a diagonally dominant, tridiagonal, symmetric, hence invertible matrix;

thus, (E) has a unique solution. The unknowns D¡, i £ J, hence 4+1/3 »

will be written as linear combinations of d0 and dn. Once 4+1/3 > l £ J,

are determined, we obtain 4 and 4-1+2/3 f°r t £ K, using (5)' and (4),

respectively.

There remains to verify inequalities (I):

4 ^ °' 4+1/3 - 4 ^ °' 4+1/3 -4)+i/3 > 0,...,

4-1+1/3 - 4,-2+1/3 £ °' 4 - 4,-1+1/3 ̂  ° •

3.6. The system (E) can be written symbolically in the following manner: Hd =

A - d0ex - dnen, where à, A, ex, en are respectively the vectors

d = (D0,Dx,...,Dn_x)1,       A = (3A0,3A1,...,3An_1)',

e,=(l,0,...,0)',        en = (0,0,..., X)'.

Therefore, d = H~ A - d0H~ ex - dnH~ en .

The proposed method can be described by the following

Algorithm, (a) Express 4+1/3 » 4+1/3 » ■•• » 4-i+i/3 as functi°ns of the two

free parameters (d0, dn) by solving three systems of linear equations with the

same tridiagonal matrix.

(b) Substitute these expressions in (I), which becomes a system of n+2 linear

inequalities in the two unknowns (d0, dn).

(c) Find a (d0, dn) in the polygon defined by (I).

(d) IF (I) is empty, THEN our problem has no solution: STOP.

ELSE calculate numerically 4+1/3 » 4+1/3 > • •• > 4-i+i/3 »tnen p¡ f°r * G / :

STOP.

Remarks. (R,) Because of the uniqueness of the solution of (E), if the inter-

polation data are points chosen in the graph of a convex monotone polynomial

of degree < 3 , and if we choose d0 (resp. dn) equal to the value of the deriva-

tive of the interpolating function at the first node (resp. at the last node), the

solution is the function itself.

(R2) This method can be extended to splines of higher degrees and smooth-

ness (for instance degree 4 and smoothness class C3). The number of param-

eters will be larger, thus giving rise to a larger linear system of inequalities.
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(R3) Dupin and Freville [4], for a uniform mesh, give some sufficient con-

ditions for the existence of such shape-preserving C cubic polynomial inter-

polating splines and give a corresponding algorithm.

(R4) For solving (I), there exist algorithms requiring a number of iterations

which is bounded by a polynomial in terms of the size of the problem (Kar-

markar's and Kachyan's algorithm).

Of course, the simplex method, or even a graphical method, can also be used.

3.7.    Uniform subdivision. In this case, hQ = hx =h2 = •■■ = hn_2 = hn_x, and

(E) becomes

$d        ■+■ ±d
2"0+l/3 + 2"l + l/3

24-1 + 1/3 + 24+I/3 +

id. ,.,/, + U.

3A,0 'o ■

\d
2"/+l+l/3

= 3A

= 3A,   for / = 1, 2, ... ,n- 2,

1-42M«-2+l/3 T 2"n-l + l/3

The corresponding matrix H is now also symmetric relative to its center. So
■1.     :. __:„,,„_„      , ,1        rr-1        by

(Zq , zx,

zt = tH-\

, zn_x)' = H   en is obtained from (/0, tx

for i £ J .
'„-!)' = ""

3.8. Example. We interpolate ten points Mi(xi, z¡) of the graph of the func-

tion f(t) = (-9t + 2)/(4t + 5) (cf. [8, p. 50]). This function is decreasing and

convex on the interval [-1,8]. We use a uniform subdivision h¡ = 1 for

i = 0, 1.8.

-1 0 1

11 0.4 -0.77777 -1.23077 1.47059 •1.6190 •1.72 -1.79310 -1.84848 -1.89189

Taking d0 = -27 and d9 = -0.03 , we obtain a solution satisfying inequalities

(I). Its graph is shown below.
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Conclusions

A direct, inexpensive, constructive method for interpolating convex, mono-

tone data with shape-preserving C cubic polynomial splines is proposed.

Whenever the corresponding polyhedron in R2 is nonempty, it determines the

two degrees of freedom that occur in the classical cubic spline interpolation

problem in such a way as to ensure the shape conditions. The technique seems

promising for higher degrees and smoothness and from the point of view of

accuracy.
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