Complete solutions to families of quartic Thue equations
Author:
Attila Pethő
Journal:
Math. Comp. 57 (1991), 777-798
MSC:
Primary 11D25
DOI:
https://doi.org/10.1090/S0025-5718-1991-1094956-7
MathSciNet review:
1094956
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Using a method due to E. Thomas, we prove that if $|a| > 9.9 \cdot {10^{27}}$ then the Diophantine equations \[ {x^4} - a{x^3}y - {x^2}{y^2} + ax{y^3} + {y^4} = 1\] and \[ {x^4} - a{x^3}y - 3{x^2}{y^2} + ax{y^3} + {y^4} = \pm 1\] have exactly twelve solutions, namely $(x,y) = (0, \pm 1), ( \pm 1,0), ( \pm 1, \pm 1), ( \mp 1, \pm 1), ( \pm a, \pm 1), ( \pm 1, \mp a)$ and eight solutions, $(x,y) = (0, \pm 1), ( \pm 1,0), ( \pm 1, \pm 1), ( \pm 1, \mp 1)$ , respectively.
- A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI https://doi.org/10.1093/qmath/20.1.129
- Josef Blass, A. M. W. Glass, David K. Manski, David B. Meronk, and Ray P. Steiner, Constants for lower bounds for linear forms in the logarithms of algebraic numbers. II. The homogeneous rational case, Acta Arith. 55 (1990), no. 1, 15–22. MR 1056111, DOI https://doi.org/10.4064/aa-55-1-15-22
- I. Gaál and N. Schulte, Computing all power integral bases of cubic fields, Math. Comp. 53 (1989), no. 188, 689–696. MR 979943, DOI https://doi.org/10.1090/S0025-5718-1989-0979943-X
- Wilhelm Ljunggren, On the representation of integers by binary quadratic forms of a special class, Norsk Mat. Tidsskr. 26 (1944), 51–59 (Norwegian). MR 18673
- Trygve Nagell, Sur les représentations de l’unité par les formes binaires biquadratiques du premier rang, Ark. Mat. 5 (1965), 477–521 (1965) (French). MR 190083, DOI https://doi.org/10.1007/BF02591527
- Trygve Nagell, Sur les unités dans les corps biquadratiques primitifs du premier rang, Ark. Mat. 7 (1968), 359–394 (1968) (French). MR 244194, DOI https://doi.org/10.1007/BF02591029
- A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), no. 3-4, 189–196 (German). MR 934900
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013
- Ray P. Steiner, On Mordell’s equation $y^2-k=x^3$: a problem of Stolarsky, Math. Comp. 46 (1986), no. 174, 703–714. MR 829640, DOI https://doi.org/10.1090/S0025-5718-1986-0829640-3
- R. J. Stroeker, On quartic Thue equations with trivial solutions, Math. Comp. 52 (1989), no. 185, 175–187. MR 946605, DOI https://doi.org/10.1090/S0025-5718-1989-0946605-4
- R. J. Stroeker and N. Tzanakis, On the application of Skolem’s $p$-adic method to the solution of Thue equations, J. Number Theory 29 (1988), no. 2, 166–195. MR 945593, DOI https://doi.org/10.1016/0022-314X%2888%2990098-4
- Emery Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), no. 2, 235–250. MR 1042497, DOI https://doi.org/10.1016/0022-314X%2890%2990154-J ---, Solutions to families of cubic Thue equations. I, Preprint MSRI 07108-89.
- B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
Retrieve articles in Mathematics of Computation with MSC: 11D25
Retrieve articles in all journals with MSC: 11D25
Additional Information
Keywords:
Thue equation,
linear forms in the logarithms of algebraic numbers
Article copyright:
© Copyright 1991
American Mathematical Society