Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Numerical analysis of the deterministic particle method applied to the Wigner equation
HTML articles powered by AMS MathViewer

by Anton Arnold and Francis Nier PDF
Math. Comp. 58 (1992), 645-669 Request permission

Abstract:

The Wigner equation of quantum mechanics has the form of a kinetic equation with a pseudodifferential operator in a Fourier integral form which requires great care in the numerical approximation. This paper is concerned with the numerical analysis of the weighted particle method, introduced by S. Mas-Gallic and P. A. Raviart, applied to this equation. In particular, we will prove convergence of the method in a physically relevant case, where the Wigner equation models the quantum tunneling of electrons through a potential barrier.
References
  • S. Mas-Gallic and P.-A. Raviart, A particle method for first-order symmetric systems, Numer. Math. 51 (1987), no. 3, 323–352. MR 895090, DOI 10.1007/BF01400118
  • E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), 749-759. W. R. Frensley, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B 36 (1987), 1570-1580. U. Ravaioli, M. A. Osman, W. Pötz, N. Kluksdahl, and D. K. Ferry, Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach, Physica B 134 (1985), 36-40.
  • Christian Ringhofer, A spectral method for the numerical simulation of quantum tunneling phenomena, SIAM J. Numer. Anal. 27 (1990), no. 1, 32–50. MR 1034919, DOI 10.1137/0727003
  • S. Mas-Gallic and F. Poupaud, Approximation of the transport equation by a weighted particle method, Transport Theory Statist. Phys. 17 (1988), no. 4, 311–345. MR 968659, DOI 10.1080/00411458808230870
  • Sylvie Mas-Gallic, A deterministic particle method for the linearized Boltzmann equation, Proceedings of the conference on mathematical methods applied to kinetic equations (Paris, 1985), 1987, pp. 855–887. MR 906929, DOI 10.1080/00411458708204318
  • P. Degond and B. Niclot, Numerical analysis of the weighted particle method applied to the semiconductor Boltzmann equation, Numer. Math. 55 (1989), no. 5, 599–618. MR 998912, DOI 10.1007/BF01398918
  • Peter A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Methods Appl. Sci. 11 (1989), no. 4, 459–469. MR 1001097, DOI 10.1002/mma.1670110404
  • P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) Lecture Notes in Math., vol. 1127, Springer, Berlin, 1985, pp. 243–324. MR 802214, DOI 10.1007/BFb0074532
  • Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
  • P. Degond and F. Guyot-Delaurens, Particle simulations of the semiconductor Boltzmann equation for one-dimensional inhomogeneous structures, J. Comput. Phys. 90 (1990), no. 1, 65–97. MR 1070472, DOI 10.1016/0021-9991(90)90197-9
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
  • G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations, SIAM J. Numer. Anal. 21 (1984), no. 1, 52–76. MR 731212, DOI 10.1137/0721003
  • P. Degond and P. A. Markowich, A mathematical analysis of quantum transport in three-dimensional crystals, Ann. Mat. Pura Appl. (to appear). —, A quantum transport model for semiconductors: the Wigner-Poisson problem on a bounded Brillouin zone, Math. Mod. Numer. Anal. (to appear). R. Dautray and J. L. Lions, Analyse mathématique et calcul numérique, Masson, Paris, 1985.
  • P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna, 1990. MR 1063852, DOI 10.1007/978-3-7091-6961-2
  • F. Nier, Application de la méthode particulaire à l’équation de Wigner-mise en oeuvre numérique, Thèse de l’Ecole Polytechnique, Palaiseau, France, 1991.
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
Similar Articles
Additional Information
  • © Copyright 1992 American Mathematical Society
  • Journal: Math. Comp. 58 (1992), 645-669
  • MSC: Primary 65M12; Secondary 35Q40, 81Q05
  • DOI: https://doi.org/10.1090/S0025-5718-1992-1122055-5
  • MathSciNet review: 1122055