Hierarchical bases for elliptic problems
HTML articles powered by AMS MathViewer
- by W. Dörfler PDF
- Math. Comp. 58 (1992), 513-529 Request permission
Abstract:
Linear systems of equations with positive and symmetric matrices often occur in the numerical treatment of linear and nonlinear elliptic boundary value problems. If the CG algorithm is used to solve these equations, one is able to speed up the convergence by "preconditioning." The method of preconditioning with hierarchical basis has already been considered for the Laplace equation in two space dimensions and for linear conforming elements. In the present work this method is generalized to a large class of conforming and nonconforming elements.References
- O. Axelsson and V. A. Barker, Finite element solution of boundary value problems, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. Theory and computation. MR 758437 E. Bänsch, Local mesh refinement in 2 and 3 dimensions, SFB 256, report no. 6, Universität Bonn, 1989.
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990), no. 191, 1–22. MR 1023042, DOI 10.1090/S0025-5718-1990-1023042-6
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- W. Dörfler, The conditioning of the stiffness matrix for certain elements approximating the incompressibility condition in fluid dynamics, Numer. Math. 58 (1990), no. 2, 203–214. MR 1069279, DOI 10.1007/BF01385619
- Roland Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. MR 737005, DOI 10.1007/978-3-662-12613-4
- Wolfgang Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, 2nd ed., Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1996 (German). MR 1600003
- M.-Cecilia Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Methods Engrg. 20 (1984), no. 4, 745–756. MR 739618, DOI 10.1002/nme.1620200412
- Harry Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986), no. 4, 379–412. MR 853662, DOI 10.1007/BF01389538 —, Two preconditioners based on the multi-level splitting of finite element spaces, manuscript, Universität Dortmund, 1990.
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 513-529
- MSC: Primary 65N30; Secondary 65F35
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122064-6
- MathSciNet review: 1122064