Error estimates with smooth and nonsmooth data for a finite element method for the CahnHilliard equation
HTML articles powered by AMS MathViewer
 by Charles M. Elliott and Stig Larsson PDF
 Math. Comp. 58 (1992), 603630 Request permission
Abstract:
A finite element method for the CahnHilliard equation (a semilinear parabolic equation of fourth order) is analyzed, both in a spatially semidiscrete case and in a completely discrete case based on the backward Euler method. Error bounds of optimal order over a finite time interval are obtained for solutions with smooth and nonsmooth initial data. A detailed study of the regularity of the exact solution is included. The analysis is based on local Lipschitz conditions for the nonlinearity with respect to Sobolev norms, and the existence of a Ljapunov functional for the exact and the discretized equations is essential. A result concerning the convergence of the attractor of the corresponding approximate nonlinear semigroup (upper semicontinuity with respect to the discretization parameters) is obtained as a simple application of the nonsmooth data error estimate.References

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258267.
 Michel Crouzeix and Vidar Thomée, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 359–377. MR 906176, DOI 10.1090/S00255718198709061763
 M. Crouzeix, V. Thomée, and L. B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with initial data of low regularity, Math. Comp. 53 (1989), no. 187, 25–41. MR 970700, DOI 10.1090/S00255718198909707007 Q. Du, Finite element solution of a continuum model of phase separation, preprint. Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model for phase transition, Research Report No. 8823, Department of Mathematics, Carnegie Mellon University, 1988.
 Charles M. Elliott and Donald A. French, A nonconforming finiteelement method for the twodimensional CahnHilliard equation, SIAM J. Numer. Anal. 26 (1989), no. 4, 884–903. MR 1005515, DOI 10.1137/0726049
 C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the CahnHilliard equation, Numer. Math. 54 (1989), no. 5, 575–590. MR 978609, DOI 10.1007/BF01396363
 Charles M. Elliott and Zheng Songmu, On the CahnHilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339–357. MR 855754, DOI 10.1007/BF00251803
 Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
 Jack K. Hale, XiaoBiao Lin, and Geneviève Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp. 50 (1988), no. 181, 89–123. MR 917820, DOI 10.1090/S0025571819880917820X
 HansPeter Helfrich, Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data, Numer. Math. 51 (1987), no. 5, 559–569. MR 910865, DOI 10.1007/BF01400356
 John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary NavierStokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750–777. MR 849281, DOI 10.1137/0723049
 Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 331–357. MR 906175, DOI 10.1090/S00255718198709061751
 Peter E. Kloeden and J. Lorenz, Lyapunov stability and attractors under discretization, Differential equations (Xanthi, 1987) Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York, 1989, pp. 361–368. MR 1021735
 B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations 14 (1989), no. 2, 245–297. MR 976973, DOI 10.1080/03605308908820597
 A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, SpringerVerlag, New York, 1983. MR 710486, DOI 10.1007/9781461255611
 Roger Temam, Infinitedimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, SpringerVerlag, New York, 1988. MR 953967, DOI 10.1007/9781468403138
 Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, SpringerVerlag, Berlin, 1984. MR 744045
 Vidar Thomée and Lars Wahlbin, On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378–389. MR 395269, DOI 10.1137/0712030
 Wolf von Wahl, On the CahnHilliard equation $u’+\Delta ^2u\Delta f(u)=0$, Delft Progr. Rep. 10 (1985), no. 4, 291–310. Mathematics and mathematical engineering (Delft, 1985). MR 839466
 Zheng Songmu, Asymptotic behavior of solution to the CahnHillard equation, Appl. Anal. 23 (1986), no. 3, 165–184. MR 870486, DOI 10.1080/00036818608839639
Additional Information
 © Copyright 1992 American Mathematical Society
 Journal: Math. Comp. 58 (1992), 603630
 MSC: Primary 65M60; Secondary 65M15
 DOI: https://doi.org/10.1090/S00255718199211220671
 MathSciNet review: 1122067