Computation of the zeros of $p$-adic $L$-functions
Authors:
R. Ernvall and T. Metsänkylä
Journal:
Math. Comp. 58 (1992), 815-830
MSC:
Primary 11R23; Secondary 11R42, 11Y70
DOI:
https://doi.org/10.1090/S0025-5718-1992-1122068-3
MathSciNet review:
1122068
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The authors have computed the zeros of the Kubota-Leopoldt p-adic L-functions ${L_p}(s,\chi )$ for some small odd primes p and for a number of Dirichlet characters $\chi$. The zeros of the corresponding Iwasawa power series ${f_\theta }(T)$ are also computed. The characters $\chi$ (associated with quadratic extensions of the pth cyclotomic field) are chosen so as to cover as many different splitting types of ${f_\theta }(T)$ as possible. The $\lambda$-invariant of this power series, equal to its number of zeros, assumes values up to 8. The article is a report on these computations and their results, including the required theoretical background. Much effort is devoted to a study of the accuracy of the computed approximations.
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- Nancy Childress and Robert Gold, Zeros of $p$-adic $L$-functions, Acta Arith. 48 (1987), no. 1, 63–71. MR 893462, DOI https://doi.org/10.4064/aa-48-1-63-71
- R. Ernvall and T. Metsänkylä, A method for computing the Iwasawa $\lambda $-invariant, Math. Comp. 49 (1987), no. 179, 281–294. MR 890270, DOI https://doi.org/10.1090/S0025-5718-1987-0890270-X
- Bruce Ferrero and Ralph Greenberg, On the behavior of $p$-adic $L$-functions at $s=0$, Invent. Math. 50 (1978/79), no. 1, 91–102. MR 516606, DOI https://doi.org/10.1007/BF01406470
- Helmut Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963 (German). Zweite erweiterte Auflage. MR 0153659 E. L. Ince, Cycles of reduced ideals in quadratic fields, Math. Tables IV, British Assoc. Advancement Sci., London, 1934.
- Kenkichi Iwasawa and Charles C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86–96. MR 202700, DOI https://doi.org/10.2969/jmsj/01810086 S. Kobayashi, Calcul approché de la série d’Iwasawa pour les corps quadratiques $(p = 3)$, Théorie des Nombres, 1981-82 and 1982-83, Exp. No. 4, 68 pp., Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1983.
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328–339 (German). MR 163900
- Karin Lamprecht and Horst G. Zimmer, $p$-adic algorithms and the computation of zeros of $p$-adic $L$-functions, EUROCAL ’85, Vol. 2 (Linz, 1985) Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin, 1985, pp. 491–502. MR 826581, DOI https://doi.org/10.1007/3-540-15984-3_319 R. F. Sunseri, Zeros of p-adic L-functions and densities relating to Bernoulli numbers, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1980.
- Samuel S. Wagstaff Jr., Zeros of $p$-adic $L$-functions, Math. Comp. 29 (1975), no. 132, 1138–1143. MR 387253, DOI https://doi.org/10.1090/S0025-5718-1975-0387253-7
- Samuel S. Wagstaff Jr., Zeros of $p$-adic $L$-functions. II, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 297–308. MR 685305
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674
- Lawrence C. Washington, Zeros of $p$-adic $L$-functions, Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981) Progr. Math., vol. 22, Birkhäuser, Boston, Mass., 1982, pp. 337–357. MR 693329
Retrieve articles in Mathematics of Computation with MSC: 11R23, 11R42, 11Y70
Retrieve articles in all journals with MSC: 11R23, 11R42, 11Y70
Additional Information
Keywords:
<I>p</I>-adic <I>L</I>-functions,
computation of zeros,
factorization of polynomials,
Newton’s tangent method,
Abelian fields,
Iwasawa theory
Article copyright:
© Copyright 1992
American Mathematical Society