Higher-dimensional nonnested multigrid methods
HTML articles powered by AMS MathViewer
- by L. Ridgway Scott and Shangyou Zhang PDF
- Math. Comp. 58 (1992), 457-466 Request permission
Abstract:
Nonnested multigrid methods are shown to be optimal-order solvers for systems of finite element equations arising from elliptic boundary problems in any space dimension. Results are derived for Lagrange-type elements of arbitrary degree.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Randolph E. Bank and Todd Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), no. 153, 35–51. MR 595040, DOI 10.1090/S0025-5718-1981-0595040-2
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), no. 193, 1–34. MR 1052086, DOI 10.1090/S0025-5718-1991-1052086-4
- Susanne C. Brenner, An optimal-order multigrid method for $\textrm {P}1$ nonconforming finite elements, Math. Comp. 52 (1989), no. 185, 1–15. MR 946598, DOI 10.1090/S0025-5718-1989-0946598-X
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Wolfgang Hackbusch, Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR 814495, DOI 10.1007/978-3-662-02427-0
- Stephen F. McCormick (ed.), Multigrid methods, Frontiers in Applied Mathematics, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR 972752, DOI 10.1137/1.9781611971057
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7 L. R. Scott and S. Zhang, A nonnested multigrid method for three dimensional boundary value problems: An introduction to the NMGTM code, in preparation.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- R. Verfürth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal. 21 (1984), no. 2, 264–271. MR 736330, DOI 10.1137/0721019
- J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. MR 895589, DOI 10.1017/CBO9781139171755 S. Zhang, Multi-level iterative techniques, Ph.D. thesis, Pennsylvania State University, 1988. —, Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes, (submitted), also in [15].
- Shangyou Zhang, Optimal-order nonnested multigrid methods for solving finite element equations. I. On quasi-uniform meshes, Math. Comp. 55 (1990), no. 191, 23–36. MR 1023054, DOI 10.1090/S0025-5718-1990-1023054-2
- Shangyou Zhang, Optimal-order nonnested multigrid methods for solving finite element equations. II. On nonquasiuniform meshes, Math. Comp. 55 (1990), no. 192, 439–450. MR 1035947, DOI 10.1090/S0025-5718-1990-1035947-0 —, Optimal-order nonnested multigrid methods for solving finite element equations III: On degenerate meshes, (submitted).
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 457-466
- MSC: Primary 65N55; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122077-4
- MathSciNet review: 1122077