Asymptotic inversion of incomplete gamma functions
Author:
N. M. Temme
Journal:
Math. Comp. 58 (1992), 755-764
MSC:
Primary 33B20
DOI:
https://doi.org/10.1090/S0025-5718-1992-1122079-8
MathSciNet review:
1122079
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The normalized incomplete gamma functions and
are inverted for large values of the parameter a. That is, x-solutions of the equations
![$\displaystyle P(a,x) = p,\quad Q(a,x) = q,\quad p \in [0,1],q = 1 - p,$](images/img6.gif)

- [1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
- [2]
D. J. Best and D. E. Roberts, Algorithm AS 91: The percentage points of the
distribution, Appl. Statist. 24 (1975), 385-388.
- [3] J. M. Blair, C. A. Edwards, and J. H. Johnson, Rational Chebyshev approximations for the inverse of the error function, Math. Comp. 30 (1976), no. 136, 827–830. MR 421040, https://doi.org/10.1090/S0025-5718-1976-0421040-7
- [4] T. A. Burgin, The gamma distribution and inventory control, Oper. Res. Q. 26 (1975), 507-525.
- [5] A. R. DiDonato and A. H. Morris, Jr., Computation of the incomplete gamma functions, ACM Trans. Math. Software 12 (1986), 377-393.
- [6] Henry E. Fettis, An asymptotic expansion for the upper percentage points of the 𝜒²-distribution, Math. Comp. 33 (1979), no. 147, 1059–1064. MR 528059, https://doi.org/10.1090/S0025-5718-1979-0528059-9
- [7] Anthony Strecok, On the calculation of the inverse of the error function, Math. Comp. 22 (1968), 144–158. MR 223070, https://doi.org/10.1090/S0025-5718-1968-0223070-2
- [8] N. M. Temme, The asymptotic expansion of the incomplete gamma functions, SIAM J. Math. Anal. 10 (1979), no. 4, 757–766. MR 533947, https://doi.org/10.1137/0510071
- [9] N. M. Temme, The uniform asymptotic expansion of a class of integrals related to cumulative distribution functions, SIAM J. Math. Anal. 13 (1982), no. 2, 239–253. MR 647123, https://doi.org/10.1137/0513017
Retrieve articles in Mathematics of Computation with MSC: 33B20
Retrieve articles in all journals with MSC: 33B20
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1992-1122079-8
Keywords:
Incomplete gamma function,
distribution,
inversion of gamma distribution,
asymptotic expansion
Article copyright:
© Copyright 1992
American Mathematical Society