Asymptotic inversion of incomplete gamma functions

Author:
N. M. Temme

Journal:
Math. Comp. **58** (1992), 755-764

MSC:
Primary 33B20

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122079-8

MathSciNet review:
1122079

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The normalized incomplete gamma functions $P(a,x)$ and $Q(a,x)$ are inverted for large values of the parameter *a*. That is, *x*-solutions of the equations \[ P(a,x) = p,\quad Q(a,x) = q,\quad p \in [0,1],q = 1 - p,\] are considered, especially for large values of *a*. The approximations are obtained by using uniform asymptotic expansions of the incomplete gamma functions in which an error function is the dominant term. The inversion problem is started by inverting this error function term. Numerical results indicate that for obtaining an accuracy of four correct digits, the method can already be used for $a = 2$, although *a* is a large parameter. It is indicated that the method can be applied to other cumulative distribution functions.

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642**
D. J. Best and D. E. Roberts, - J. M. Blair, C. A. Edwards, and J. H. Johnson,
*Rational Chebyshev approximations for the inverse of the error function*, Math. Comp.**30**(1976), no. 136, 827–830. MR**421040**, DOI https://doi.org/10.1090/S0025-5718-1976-0421040-7
T. A. Burgin, - Henry E. Fettis,
*An asymptotic expansion for the upper percentage points of the $\chi ^{2}$-distribution*, Math. Comp.**33**(1979), no. 147, 1059–1064. MR**528059**, DOI https://doi.org/10.1090/S0025-5718-1979-0528059-9 - Anthony Strecok,
*On the calculation of the inverse of the error function*, Math. Comp.**22**(1968), 144–158. MR**223070**, DOI https://doi.org/10.1090/S0025-5718-1968-0223070-2 - N. M. Temme,
*The asymptotic expansion of the incomplete gamma functions*, SIAM J. Math. Anal.**10**(1979), no. 4, 757–766. MR**533947**, DOI https://doi.org/10.1137/0510071 - N. M. Temme,
*The uniform asymptotic expansion of a class of integrals related to cumulative distribution functions*, SIAM J. Math. Anal.**13**(1982), no. 2, 239–253. MR**647123**, DOI https://doi.org/10.1137/0513017

*Algorithm*AS 91:

*The percentage points of the*${\chi ^2}$

*distribution*, Appl. Statist.

**24**(1975), 385-388.

*The gamma distribution and inventory control*, Oper. Res. Q.

**26**(1975), 507-525. A. R. DiDonato and A. H. Morris, Jr.,

*Computation of the incomplete gamma functions*, ACM Trans. Math. Software

**12**(1986), 377-393.

Retrieve articles in *Mathematics of Computation*
with MSC:
33B20

Retrieve articles in all journals with MSC: 33B20

Additional Information

Keywords:
Incomplete gamma function,
<IMG WIDTH="27" HEIGHT="43" ALIGN="MIDDLE" BORDER="0" SRC="images/img1.gif" ALT="${\chi ^2}$"> distribution,
inversion of gamma distribution,
asymptotic expansion

Article copyright:
© Copyright 1992
American Mathematical Society