## Asymptotic inversion of incomplete gamma functions

HTML articles powered by AMS MathViewer

- by N. M. Temme PDF
- Math. Comp.
**58**(1992), 755-764 Request permission

## Abstract:

The normalized incomplete gamma functions $P(a,x)$ and $Q(a,x)$ are inverted for large values of the parameter*a*. That is,

*x*-solutions of the equations \[ P(a,x) = p,\quad Q(a,x) = q,\quad p \in [0,1],q = 1 - p,\] are considered, especially for large values of

*a*. The approximations are obtained by using uniform asymptotic expansions of the incomplete gamma functions in which an error function is the dominant term. The inversion problem is started by inverting this error function term. Numerical results indicate that for obtaining an accuracy of four correct digits, the method can already be used for $a = 2$, although

*a*is a large parameter. It is indicated that the method can be applied to other cumulative distribution functions.

## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642**
D. J. Best and D. E. Roberts, - J. M. Blair, C. A. Edwards, and J. H. Johnson,
*Rational Chebyshev approximations for the inverse of the error function*, Math. Comp.**30**(1976), no. 136, 827–830. MR**421040**, DOI 10.1090/S0025-5718-1976-0421040-7
T. A. Burgin, - Henry E. Fettis,
*An asymptotic expansion for the upper percentage points of the $\chi ^{2}$-distribution*, Math. Comp.**33**(1979), no. 147, 1059–1064. MR**528059**, DOI 10.1090/S0025-5718-1979-0528059-9 - Anthony Strecok,
*On the calculation of the inverse of the error function*, Math. Comp.**22**(1968), 144–158. MR**223070**, DOI 10.1090/S0025-5718-1968-0223070-2 - N. M. Temme,
*The asymptotic expansion of the incomplete gamma functions*, SIAM J. Math. Anal.**10**(1979), no. 4, 757–766. MR**533947**, DOI 10.1137/0510071 - N. M. Temme,
*The uniform asymptotic expansion of a class of integrals related to cumulative distribution functions*, SIAM J. Math. Anal.**13**(1982), no. 2, 239–253. MR**647123**, DOI 10.1137/0513017

*Algorithm*AS 91:

*The percentage points of the*${\chi ^2}$

*distribution*, Appl. Statist.

**24**(1975), 385-388.

*The gamma distribution and inventory control*, Oper. Res. Q.

**26**(1975), 507-525. A. R. DiDonato and A. H. Morris, Jr.,

*Computation of the incomplete gamma functions*, ACM Trans. Math. Software

**12**(1986), 377-393.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp.
**58**(1992), 755-764 - MSC: Primary 33B20
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122079-8
- MathSciNet review: 1122079