Weight formulas for ternary Melas codes
HTML articles powered by AMS MathViewer
- by Gerard van der Geer, René Schoof and Marcel van der Vlugt PDF
- Math. Comp. 58 (1992), 781-792 Request permission
Abstract:
In this paper we derive a formula for the frequencies of the weights in ternary Melas codes and we illustrate this formula by computing a table of examples.References
- Gerard van der Geer and Marcel van der Vlugt, Artin-Schreier curves and codes, J. Algebra 139 (1991), no. 1, 256–272. MR 1106350, DOI 10.1016/0021-8693(91)90293-H
- Serge Lang, Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften, No. 222, Springer-Verlag, Berlin-New York, 1976. MR 0429740
- Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315. MR 369263, DOI 10.1007/BF01344466 J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1983.
- C. M. Melas, A new group of codes for correction of dependent errors in data transmission, IBM J. Res. Develop. 4 (1960), 58–65. MR 110594, DOI 10.1147/rd.41.0058
- René Schoof and Marcel van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), no. 2, 163–186. MR 1111555, DOI 10.1016/0097-3165(91)90016-A
- René Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), no. 2, 183–211. MR 914657, DOI 10.1016/0097-3165(87)90003-3
- Jean-Pierre Serre, Cours d’arithmétique, Collection SUP: “Le Mathématicien”, vol. 2, Presses Universitaires de France, Paris, 1970 (French). MR 0255476
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 781-792
- MSC: Primary 94B25
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122080-4
- MathSciNet review: 1122080