The effect of numerical quadrature in the $p$-version of the finite element method
Authors:
Uday Banerjee and Manil Suri
Journal:
Math. Comp. 59 (1992), 1-20
MSC:
Primary 65D30; Secondary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-1992-1134712-5
MathSciNet review:
1134712
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate the use of numerical quadrature in the p-version of the finite element method. We describe a set of minimal conditions that the quadrature rules should satisfy, for various types of elements. Under sufficient assumptions of smoothness, we establish optimality of the asymptotic rate of convergence. Some computational results are presented, which illustrate under what conditions overintegration may be useful.
- I. Babuška and Manil Suri, The optimal convergence rate of the $p$-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI https://doi.org/10.1137/0724049 I. Babuška, B. Guo, and M. Suri, Implementation of nonhomogeneous Dirichlet boundary conditions in the p-version of the finite element method, Impact Comput. Sci. Engrg. 1 (1989), 36-63.
- C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), no. 157, 67–86. MR 637287, DOI https://doi.org/10.1090/S0025-5718-1982-0637287-3
- Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
- P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 409–474. MR 0421108
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR 0448814
- Milo R. Dorr, The approximation theory for the $p$-version of the finite element method, SIAM J. Numer. Anal. 21 (1984), no. 6, 1180–1207. MR 765514, DOI https://doi.org/10.1137/0721073
- D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg. 21 (1985), no. 6, 1129–1148. MR 794241, DOI https://doi.org/10.1002/nme.1620210612
- D. A. Dunavant, Economical symmetrical quadrature rules for complete polynomials over a square domain, Internat. J. Numer. Methods Engrg. 21 (1985), no. 10, 1777–1784. MR 809279, DOI https://doi.org/10.1002/nme.1620211004
- V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
- W. Gui and I. Babuška, The $h,\;p$ and $h$-$p$ versions of the finite element method in $1$ dimension. I. The error analysis of the $p$-version, Numer. Math. 49 (1986), no. 6, 577–612. MR 861522, DOI https://doi.org/10.1007/BF01389733 J. N. Lyness, QUG2-integration over a triangle, Technical Memo #13, Math. and Comp. Sci. Div., Argonne National Lab., 1983.
- Yvon Maday and Einar M. Rønquist, Optimal error analysis of spectral methods with emphasis on nonconstant coefficients and deformed geometries, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 1-3, 91–115. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067944, DOI https://doi.org/10.1016/0045-7825%2890%2990016-F H.-S. Oh and I. Babuška, The p-version of the finite element method for the elliptic boundary value problems with interfaces, Comput. Methods Appl. Mech. Engrg. (1992) (in press).
- Manil Suri, The $p$-version of the finite element method for elliptic equations of order $2l$, RAIRO Modél. Math. Anal. Numér. 24 (1990), no. 2, 265–304 (English, with French summary). MR 1052150, DOI https://doi.org/10.1051/m2an/1990240202651
- L. B. Wahlbin, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration, RAIRO Anal. Numér. 12 (1978), no. 2, 173–202, v (English, with French summary). MR 502070, DOI https://doi.org/10.1051/m2an/1978120201731
Retrieve articles in Mathematics of Computation with MSC: 65D30, 65N30
Retrieve articles in all journals with MSC: 65D30, 65N30
Additional Information
Article copyright:
© Copyright 1992
American Mathematical Society