On the numerical evaluation of Legendre’s chi-function
HTML articles powered by AMS MathViewer
- by J. Boersma and J. P. Dempsey PDF
- Math. Comp. 59 (1992), 157-163 Request permission
Abstract:
Legendre’s chi-function, ${\chi _n}(z) = \Sigma _{k = 0}^\infty {z^{2k + 1}}/{(2k + 1)^n}$, is reexpanded in a power series in powers of $\log z$. The expansion obtained is well suited for the computation of ${\chi _n}(z)$ in the two cases of real z close to 1, and $z = {e^{i\alpha }},\alpha \in \mathbb {R}$. For $n = 2$ and $n = 3$, the present computational procedure is shown to be superior to the procedure recently proposed by Dempsey, Liu, and Dempsey, which uses Plana’s summation formula.References
-
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
- Kevin M. Dempsey, Dajin Liu, and John P. Dempsey, Plana’s summation formula for $\sum ^\infty _{m=1,3,\cdots }m^{-2}\sin (m\alpha ),m^{-3}\cos (m\alpha ),m^{-2}A^m,m^{-3}A^m$, Math. Comp. 55 (1990), no. 192, 693–703. MR 1035929, DOI 10.1090/S0025-5718-1990-1035929-9 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.
- Walter Gautschi, On certain slowly convergent series occurring in plate contact problems, Math. Comp. 57 (1991), no. 195, 325–338. MR 1079018, DOI 10.1090/S0025-5718-1991-1079018-7
- Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278 H. Li, Unbonded contact of rectangular plates on edge supports or elastic foundations, Ph.D. Thesis, Clarkson University, Potsdam, 1988.
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 59 (1992), 157-163
- MSC: Primary 65B10
- DOI: https://doi.org/10.1090/S0025-5718-1992-1134715-0
- MathSciNet review: 1134715