## Steiner triple systems of order $19$ with nontrivial automorphism group

HTML articles powered by AMS MathViewer

- by Charles J. Colbourn, Spyros S. Magliveras and D. R. Stinson PDF
- Math. Comp.
**59**(1992), 283-295 Request permission

## Abstract:

There are 172,248 Steiner triple systems of order 19 having a nontrivial automorphism group. Computational methods suitable for generating these designs are developed. The use of tactical configurations in conjunction with orderly algorithms underlies practical techniques for the generation of the designs, and the subexponential time isomorphism technique for triple systems is improved in practice to test isomorphisms of the designs. The automorphism group of each of the triple systems is computed, and a summary presented of the number of systems with each possible type of automorphism.## References

- S. Bays,
*Sur les systèmes cycliques de triples de Steiner différents pour $N$ premier de la forme 6 $n+1$*, Comment. Math. Helv.**4**(1932), no. 1, 183–194 (French). MR**1509455**, DOI 10.1007/BF01202715 - R. D. Cameron, C. J. Colbourn, R. C. Read, and N. C. Wormald,
*Cataloguing the graphs on $10$ vertices*, J. Graph Theory**9**(1985), no. 4, 551–562. MR**890247**, DOI 10.1002/jgt.3190090417 - Charles J. Colbourn,
*Leaves, excesses, and neighbourhoods*, Acta Univ. Carolin. Math. Phys.**28**(1987), no. 2, 41–47. 15th winter school in abstract analysis (Srní, 1987). MR**932738** - Charles J. Colbourn and Marlene J. Colbourn,
*Combinatorial isomorphism problems involving $1$-factorizations*, Ars Combin.**9**(1980), 191–200. MR**582291** - Charles J. Colbourn, Spyros S. Magliveras, and Rudolf A. Mathon,
*Transitive Steiner and Kirkman triple systems of order $27$*, Math. Comp.**58**(1992), no. 197, 441–449, S23–S27. MR**1106962**, DOI 10.1090/S0025-5718-1992-1106962-5 - Charles J. Colbourn and Ronald C. Read,
*Orderly algorithms for graph generation*, Internat. J. Comput. Math.**7**(1979), no. 3, 167–172. MR**547573**, DOI 10.1080/00207167908803169
C. J. Colbourn, D. R. Stinson, and L. Teirlinck, - R. H. F. Denniston,
*Nonisomorphic reverse Steiner triple systems of order $19$*, Ann. Discrete Math.**7**(1980), 255–264. Topics on Steiner systems. MR**584416** - Eric N. Gelling and Robert E. Odeh,
*On $1$-factorizations of the complete graph and the relationship to round robin schedules*, Proceedings of the Third Manitoba Conference on Numerical Mathematics (Winnipeg, Man., 1973) Utilitas Math., Winnipeg, Man., 1974, pp. 213–221. MR**0347669** - Rudolf Mathon and Alexander Rosa,
*A census of Mendelsohn triple systems of order nine*, Ars Combin.**4**(1977), 309–315. MR**462968**
B. D. McKay, - Kevin T. Phelps and Alexander Rosa,
*Steiner triple systems with rotational automorphisms*, Discrete Math.**33**(1981), no. 1, 57–66. MR**597228**, DOI 10.1016/0012-365X(81)90258-2 - Alan R. Prince,
*Steiner triple systems of order $19$ constructed from the Steiner triple system of order $9$*, Proc. Roy. Soc. Edinburgh Sect. A**94**(1983), no. 1-2, 89–92. MR**700503**, DOI 10.1017/S0308210500016164 - A. R. Prince,
*Steiner triple systems of order $19$ associated with a certain type of projective plane of order $10$*, Period. Math. Hungar.**17**(1986), no. 3, 177–184. MR**859347**, DOI 10.1007/BF01848647 - Ronald C. Read,
*Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations*, Ann. Discrete Math.**2**(1978), 107–120. MR**491273**
E. Seah, - E. Seah and D. R. Stinson,
*On the enumeration of one-factorizations of complete graphs containing prescribed automorphism groups*, Math. Comp.**50**(1988), no. 182, 607–618. MR**929557**, DOI 10.1090/S0025-5718-1988-0929557-1 - D. R. Stinson,
*Isomorphism testing of Steiner triple systems: canonical forms*, Ars Combin.**19**(1985), 213–218. MR**810278** - D. R. Stinson and H. Ferch,
*$2\,000\,000$ Steiner triple systems of order $19$*, Math. Comp.**44**(1985), no. 170, 533–535. MR**777284**, DOI 10.1090/S0025-5718-1985-0777284-3 - D. R. Stinson and E. Seah,
*$284\,457$ Steiner triple systems of order $19$ contain a subsystem of order $9$*, Math. Comp.**46**(1986), no. 174, 717–729. MR**829642**, DOI 10.1090/S0025-5718-1986-0829642-7 - Luc Teirlinck,
*On Steiner spaces*, J. Combin. Theory Ser. A**26**(1979), no. 2, 103–114. MR**530282**, DOI 10.1016/0097-3165(79)90060-8

*A parallelization of Miller’s*${n^{\log n}}$

*isomorphism algorithm*(submitted).

*Nauty user’s guide*(

*version*1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990. G. L. Miller,

*On the*${n^{\log n}}$

*isomorphism technique*, Proc. Tenth Annual ACM Sympos. Theory of Computing, ACM, New York, 1978, pp. 51-58.

*On the enumeration of Howell designs and*1-

*factorizations using orderly algorithms*, Ph.D. Thesis, Department of Computer Science, University of Manitoba, 1987.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp.
**59**(1992), 283-295 - MSC: Primary 05B07; Secondary 20B25
- DOI: https://doi.org/10.1090/S0025-5718-1992-1134722-8
- MathSciNet review: 1134722