Generalized Euler constants for arithmetical progressions
HTML articles powered by AMS MathViewer
 by Karl Dilcher PDF
 Math. Comp. 59 (1992), 259282 Request permission
Abstract:
The work of Lehmer and Briggs on Euler constants in arithmetical progressions is extended to the generalized Euler constants that arise in the Laurent expansion of $\zeta (s)$ about $s = 1$. The results are applied to the summation of several classes of slowly converging series. A table of the constants is provided.References

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
 Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, SpringerVerlag, New YorkHeidelberg, 1976. MR 0434929
 Bruce C. Berndt, Ramanujan’s notebooks. Part I, SpringerVerlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125, DOI 10.1007/9781461210887
 Jan Bohman and CarlErik Fröberg, The Stieltjes function—definition and properties, Math. Comp. 51 (1988), no. 183, 281–289. MR 942155, DOI 10.1090/S00255718198809421559
 A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New YorkLondon, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
 W. E. Briggs, The irrationality of $\gamma$ or of sets of similar constants, Norske Vid. Selsk. Forh. (Trondheim) 34 (1961), 25–28. MR 139579
 Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128
 Christopher Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 171–191. MR 749681, DOI 10.1515/crll.1984.351.171 K. Dilcher, On a generalized gamma function related to the Laurent coefficients of the Riemann zeta function (in preparation). E. R. Hansen, A table of series and products, PrenticeHall, Englewood Cliffs, NJ, 1975.
 M. I. Israilov, The Laurent expansion of the Riemann zeta function, Trudy Mat. Inst. Steklov. 158 (1981), 98–104, 229 (Russian). Analytic number theory, mathematical analysis and their applications. MR 662837 E. Jacobsthal, Über die Eulersche Konstante, K. Norske Vid. Selsk. Skrifter (Trondheim), 1967. J. C. Kluyver, On a certain series of Mr. Hardy, Quart. J. Pure Appl. Math. 50 (1927), 185192.
 J. Knopfmacher, Generalised Euler constants, Proc. Edinburgh Math. Soc. (2) 21 (1978/79), no. 1, 25–32. MR 472742, DOI 10.1017/S0013091500015844
 D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), 125–142. MR 369233, DOI 10.4064/aa271125142
 J. J. Y. Liang and John Todd, The Stieltjes constants, J. Res. Nat. Bur. Standards Sect. B 76B (1972), 161–178. MR 326974
 Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984) World Sci. Publishing, Singapore, 1985, pp. 279–295. MR 827790
 Yasushi Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. 12 (1989), no. 1, 49–58. MR 1001731, DOI 10.3836/tjm/1270133547
 È. P. Stankus, A remark on the coefficients of Laurent series of the Riemann zeta function, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 121 (1983), 103–107 (Russian). Studies in number theory, 8. MR 711377
Additional Information
 © Copyright 1992 American Mathematical Society
 Journal: Math. Comp. 59 (1992), 259282
 MSC: Primary 11Y60; Secondary 11M20, 65B10, 65B15
 DOI: https://doi.org/10.1090/S00255718199211347265
 MathSciNet review: 1134726