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A METHOD OF TABULATING
THE NUMBER-THEORETIC FUNCTION g(k)

RENATE SCHEIDLER AND HUGH C. WILLIAMS

Abstract. Let g(k) be the least integer > k + 1 such that all prime factors of

( k) are greater than k . The function g(k) appears to show quite irregular

behavior and is hard to compute. This paper describes a method of computing

g(k), using sieving techniques, and provides a table of values of g(k) for

k < 140.

1. Introduction

In a symposium on computers in number theory held in 1969, Erdös [3] pre-

sented a paper consisting of problems he felt might be approachable by com-

putational techniques. One of these was to determine an estimate for g(k),

where g(k) is the least integer (> k + 1) such that all the prime factors of

( g[k) ) must exceed k. In a subsequent paper, Ecklund, Erdös, and Selfridge

[2] provided a table of values of g(k). This table is complete for k < 40 ; also,

three more entries are present for k = 42, 46, and 52. These are all the values

of g(k) < 2500000 when k < 100.
Very little seems to be known about the behavior of g(k). It appears to

increase rather rapidly with increasing k , and it is difficult to compute. Thus, it

was thought that a larger table of g(k) might prove to be useful. The purpose of

this paper is to discuss a method of computing g(k) by using sieving techniques,

and to provide a complete table of values of g(k) for all k < 140.

We begin with a brief discussion of the generalized sieving problem. In

general, a sieving problem P defines h linear congruences

x = rh ,rh, ... , rin¡ (mod ra,)       (i = 1, 2, ... , h; I < n¡ < m¡),

where the moduli mx,m2, ... , zri/, are positive integers. It may be assumed

that the m, are relatively prime in pairs, and that each set of admissible residues

R¡ = {/í,, r¡2, ... , rin) contains distinct, nonnegative integers less than m¡.

The solution set S(P) for P is defined to be all integers x that lie within an

interval or range specified by P, say A < x < b , such that

(1.1) x(modmi)eRl       (i = 1, 2, ... , h)

and satisfy any additional restrictions placed on ^ by P.
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It is possible to construct very fast special purpose machines for finding so-

lutions to sieve problems. Recently, Stephens and Williams [5] have described

such a device, called OASiS. OASiS will search for values of x satisfying a siev-

ing problem at the rate of 215 000000 trials per second. It should be pointed

out that OASiS is just the most recent in a long series of such machines. For a

history of the developments, we refer the reader to [5]. When sieving mecha-

nisms are in use, it is customary to call the sets of admissible residues R¡ rings

modulo m i and the process of determining values which should be in the i?,

sets loading the rings. The execution of any sieve problem is made up of two

phases: (1) loading the rings, (2) searching for the solution. The process of

searching for a solution is performed by first producing values in the range sat-

isfying (1.1) and then determining whether these values satisfy any additional

restrictions. This latter operation is called filtering.
In the next sections we will show how the problem of determining g(k) can

be converted to a sieve problem.

2. The algorithm

We need to determine the minimal number n > k + 1 such that no prime

p < k is a divisor of ( \ ). In order to determine whether or not ( nk ) is divisible

by a prime p , we first make use of a result which is essentially due to Kummer

(see [1, p. 220]).

Theorem 1. Let n = Y1'í=q^íP' and k = Yl',=oaiP' oe me base-p representations

of n and k, respectively, where p is a prime. Then p \ ( " ) if and only if b¡ > a¡
(i = 0,l,...,t).

Proof. Let e_i = 0, and for z = 0, I, ... , t put

( 1    if bj < a,+ e, _ i
*, = {

0   if bi > a¡ + e,_
c¡ = pe, + b¡-X -a,_i -e,_i.

Then the e, are the "carry-overs" when performing the subtraction of k from

zz in base p , and we have

n-k = ^cipi -pt+xe,

i=0

and 0 < c, < p. Since n - k > 0, we must have s, = 0, and we have found

that the base-p representation of n - k is given by

« - k = E CiP¡.
i= o

We can now use the well-known theorem of Legendre on the highest power of

p which divides the factorial of an integer to find that

'°»G).
where a = J2l=o e' • ^ f°H°ws that P \("k) if and only if en = £i = • • • = e, = 0,

and this occurs if and only if a, < b¡   (z = 0, 1,..../).   D
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In order to make use of this past result, we need to be able to compute

the coefficients of k in base p. If k = YlT=o a'P' > where m is such that

pm < k < pm+x, i.e., z« = [logp k\ = [log/c/log/zj > 1, then the coefficients a¡

(i = 0, I, ... , m) can be easily computed by putting

a0 = k (mod p)    (0 < a0 < p),        s0 = k,

(2.1) ,   . , Sii — a,
ai+x = si+x (mod p)   (0 < ai+x < p),        sM = ——.

Since we would like to convert our condition p \ ( "k ) into a sieving problem,

we must determine the possible residues of zz modulo pm . Define the sets C,

(z' = 0, 1, ... , m) by

Ci = {ai, a¡+ l,a¡ + 2, ... ,p- 1}.

If zz = Y!í=o biP1, then t > m , and by Theorem 1, p\(nk) if and only if b¡ £ C¡
for all i = 0, I, ... , m . For two arbitrary sets S, T of integers and a rational

number /, let

S+T = {s + t\seS, re 7*},       lS = {ls\s£S},

S + l = S + {l},        j = js-

We now define sets

B0 = C0,        Bi = Bi-x+piCi   (i=l,2,...,m).

It follows that B¡ = ¿Z'j=oPJcJ ■

Lemma 1. Let n' = n (mod pm) and 0 < n' < pm. Then n' e 5m_i if and

only if b¡ e Cj  (i = 0, I, ... , m - I).

Proof. It is easy to see that if b¡ e C¡ (i = 0, 1, ... , m - 1), then n' —

Z)¡lo' biP' e Bm-i ■ The rest of the lemma follows from the fact that p'C¡ n

pJCj = 0 for ; / ; .    D

From Theorem 1 and Lemma 1 it follows that P \ (k) if and only if zz' e

¿?m_i and bm £ Cm . If we write zz = zz' +pmy, then y = Yl'iZo bm+iPl ', hence,

y = bm (mod p). Since n/pm < y < n/pm + 1, we have bm = [n/pm\ (mod p).

If we let Äm_i = {rx, r2, ... , rq), we obtain the following result.

Theorem 2. We have p \ (nk) if and only if n = rx, r2, ... , rq (mod pm) and

[n/pm\ (mod p)>am.

This gives rise to the following sieving algorithm for determining g(k).

(a) Load the rings. For each prime p < k:

(1) Compute zzî = [log/c/logpj and determine a0, ax, ... , am as in

(2.1).
(2) Find ßm_! = {rx, r2, ... , rq).

(3) Load the values of rx, r2, ... , rq into the ring of modulus pm .
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(b) Search for g(k).
(1) Start searching for solutions at 2k + I. (In [2] it is shown that

g(k) >2k+l for k > 4.)
(2) Once a certain range has been sieved, test each solution candi-

date s by the following routine: for each p < k determine that

[s/pm] (mod p) > am .

(3) The least value of s which passes this test is the value of g(k).

The implementation of this algorithm produced immense sieving times for

values of g(k) for even modest values of k . Fortunately, it is possible to speed

up the computation by a factor of approximately k in the case when k + 1 is

a composite integer. To describe this faster algorithm, assume that k + 1 is

composite, and write k + 1 = qpa (a> 1), where p is a prime and p\q .

Lemma 2. If k + 1 is composite, then k + l\g(k) + 1.

Proof. If k + 1 is composite, we have p < k and

k = qpa- 1 = (q- l)pa+pa- 1

= (q-l)pa + (p- l)(pa-x + Pa~2 + ---+P + 1);

hence, ao = ax = ■ ■ ■ = aa-X = p - 1 and Co = Cx = ■■■ = Ca~x = {p - 1}.

From this it is easy to show that

Bi = {pi+x-l}       (0<i<a-l).

From our earlier results it is easy to deduce that p \ (k ) only if zz (mod pa) £

5a_i ; that is, if p \ ( nk ) then n = -1 (mod pa). Since this must be true for all

prime divisors of k + 1, we see that when k + 1 is composite we must have

k + l\g(k)+l.   D

Thus, in this case, h(k) = (g(k) + l)/(k +1) is an integer, and in fact,

N = (n + l)/(k + 1) must be an integer for all possible values zz for g(k).

Hence, we can increase the speed of sieving by a factor of k + 1 by sieving for

h(k) instead of g(k). We now explain how this can be done. We first require

Theorem 3. Let n be a possible value for g(k), where k + 1 is composite, and

let N = (zz + l)/(k + 1). Let p < k be a prime.

(a) If p \ k + 1, then N(mod pm) £ Qm(Bm_x + 1) ■ where

(2.2) Qmik+l) = l    (modpm).

(b) If pa\\k + 1, then we have two cases:

if a = m + 1, then n = -1 (mod pm) ;

if a<m, then N (mod pm) £ Qm(Pm-i + l)/Pn > where

(2.3) ßm_LLi = i    (mod p"").

Proof. By Lemma 1, we have n + 1 (mod pm) £ Bm_x + 1 .

(a) Let p \ k + 1 and let Qm be as in (2.2). Then n (mod pm) £ Bm_x if

and only if N (mod pm) £ Qm(Bm^x + 1).
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(b) Let pa\\k + 1 . Since k + 1 < pm+x , we must have a < m + 1 . If

a = m + 1, then ßm_i = {pm - 1}, and hence zz = -1 (mod pm). Now

suppose a < m , and let Qm be as in (2.3). Then

N=r^Qm    (mod//").

Now if r £ Bm-X , then r (mod /za) e ßQ_i ; thus, z* = -1 (mod pa), so all the

elements of Bm_x + 1 are divisible by pa . Hence,

N(modpm)£QmBm-Xa+l.   U

In the particular case k + 1 = /zm+1 , the congruence zz = -1 (mod pm) is

always satisfied, and we do not need to include the modulus pm in the sieving

process. So in the case of k + 1 being composite, we can modify our earlier

algorithm by changing step (3) of part (a) to:

(3) If p t k + 1, compute Qm of (2.2) and load the residues Qm(rx + 1),
ßm(>2 + 1), ... , Qmifq + 1) (mod pm) into the ring of modulus pm .

If pa\\k + 1 and a < m , compute Qm of (2.3) and load the residues

Qmiri + l)/pa, Qmir2 + l)/pa,..., Qmirq + l)/pa (modpm) into the

ring of modulus pm .

If k + 1 = pm+x , then do not sieve on pm .

Part (b) of the algorithm is changed as follows. Since (g(k) + l)/(k + 1) >

(2k + 2)/(k + 1) = 2, we start the search at 2. Once a certain range has

been sieved, test each solution candidate s by putting S = (k + 1 )s - 1 and

determining for each p < k that |S7.PmJ (mod p) > am . The least value of S

for which this holds is g(k).

3. The table

In Table 1 we give all the values for g(k) for k < 140 . To get some idea of

how long this took to do, we point out that OASiS required 2 hours 48 minutes

to compute g (111) ; it required about 11 days 11 hours to compute the largest

value found, g(l39) ; and it took 5 days 1 hour to compute g(l 12). For these

last two values, the sieving times slightly exceeded the expected computation

times of approximately 10 days and 4 days 21 hours, respectively (based on a

rate of 215 000 000 trials per second). The reason for this is that OASiS verified

the contents of its rings every hour, and each such checkpoint required around

9 minutes for g(139) and 2 minutes for g(H2). The checkpoints for g(l39)

took significantly more time than those for g(112), since k = 139 required

more congruences, so there were more rings to verify. We note here that in the

cases of k = 111 and k = 139, sieving for h(k) did in fact achieve a speedup

of roughly k + I relative to the expected time of sieving for g(k).

In [4], Erdös pointed out that the values of g(k) appear to grow much faster

than the lower bound kx+c given in [2], where c is a positive constant. Our

computations seem to confirm this.
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Table 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

g(k)

6
7

7

23

62

143

44

159

46

47

174

2239

239

719

241

5849
2098

2099

43196

14871

19574

35423

193049

2105

36287

1119

284

240479

58782

341087

371942

6459

69614

37619

152188

152189

487343

767919

85741

3017321

96622

24041599

45043199

9484095

692222
232906799

45375224

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

g(k)

38074099

4302206

13927679

366847

79221239

7638454

53583095

17868986

34296443

4703099

108178559

93851196
2237874623

254322494

157776319

266194499

174133871

25013442

673750867

643364693

237484869

549177974

3184709471

4179979724

15780276223

19942847999

48899668971
16360062718

2198202863

950337359

29154401359

43228410965

6599930719

1101163607

797012560343

95695473244

449488751711

328151678711

39419852119

88 94923115999

89 3524996442239

90 2487760912090

91 739416801247

92 2380889434844

93 577593151999
94 107706126974

95 71573860223

__k_g(k)

96 5589371247

97 104141995747

98 10628330723

99 5675499

100 3935600486

101 2128236159983

102 175209712494

103 5092910127863

104 6003175578749

105 4753399456493

106 488898352367

107 6260627365739

108 9746385386989

109 73245091349869

110 94794806842238

111 222261611307119

112 90200708362489

113 517968108138869

114 517968108138869

115 12714356616655615

116 4112143718554871

117 10584753118053749

118 3781786358757119

119 598228285941119

120 260509131365372

121 404087677322873

122 115598852533247

123 71406652074623

124 28204866143999

125 3988617067133

126 5614007242751

127 60503616486143

128 14320632355808

129 38423911578259

130 7984603413422

131 3249072073157063

132 96965971239157

133 1558724612351669

134 621248003653094

135 3157756005623

136 4138898693368

137 951598054985213

138 745504491090939

139 25972027636644319

140 9089854222866845
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