Doubly cuspidal cohomology for principal congruence subgroups of

Authors:
Avner Ash and Mark McConnell

Journal:
Math. Comp. **59** (1992), 673-688

MSC:
Primary 11F75; Secondary 11F70

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134711-3

MathSciNet review:
1134711

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The cohomology of arithmetic groups is made up of two pieces, the cuspidal and noncuspidal parts. Within the cuspidal cohomology is a subspace-- the *f*-cuspidal cohomology--spanned by the classes that generate representations of the associated finite Lie group which are cuspidal in the sense of finite Lie group theory. Few concrete examples of *f*-cuspidal cohomology have been computed geometrically, outside the cases of rational rank 1, or where the symmetric space has a Hermitian structure.

This paper presents new computations of the *f*-cuspidal cohomology of principal congruence subgroups of of prime level *p*. We show that the *f*-cuspidal cohomology of vanishes for all with , but that it is nonzero for . We give a precise description of the *f*-cuspidal cohomology for in terms of the *f*-cuspidal representations of the finite Lie group .

We obtained the result, ultimately, by proving that a certain large complex matrix *M* is rank-deficient. Computation with the SVD algorithm gave strong evidence that *M* was rank-deficient; but to prove it, we mixed ideas from numerical analysis with exact computation in algebraic number fields and finite fields.

**[1]**Avner Ash,*Cohomology of congruence subgroups 𝑆𝐿(𝑛,𝑍)*, Math. Ann.**249**(1980), no. 1, 55–73. MR**575448**, https://doi.org/10.1007/BF01387080**[2]**Avner Ash,*Nonminimal modular symbols for 𝐺𝐿(𝑛)*, Invent. Math.**91**(1988), no. 3, 483–491. MR**928493**, https://doi.org/10.1007/BF01388782**[3]**Avner Ash, Daniel Grayson, and Philip Green,*Computations of cuspidal cohomology of congruence subgroups of 𝑆𝐿(3,𝑍)*, J. Number Theory**19**(1984), no. 3, 412–436. MR**769792**, https://doi.org/10.1016/0022-314X(84)90081-7**[4]**Avner Ash, Richard Pinch, and Richard Taylor,*An ̂𝐴₄ extension of 𝑄 attached to a nonselfdual automorphic form on 𝐺𝐿(3)*, Math. Ann.**291**(1991), no. 4, 753–766. MR**1135542**, https://doi.org/10.1007/BF01445238**[5]**A. Borel and H. Jacquet,*Automorphic forms and automorphic representations*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR**546598****[6]**A. Borel and J.-P. Serre,*Corners and arithmetic groups*, Comment. Math. Helv.**48**(1973), 436–491. Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. MR**0387495**, https://doi.org/10.1007/BF02566134**[7]**Kenneth S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR**672956****[8]**Laurent Clozel,*Motifs et formes automorphes: applications du principe de fonctorialité*, Automorphic forms, Shimura varieties, and 𝐿-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159 (French). MR**1044819****[9]**J. H. Davenport, Y. Siret, and E. Tournier,*Computer algebra*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1988. Systems and algorithms for algebraic computation; With a preface by Daniel Lazard; Translated from the French by A. Davenport and J. H. Davenport; With a foreword by Anthony C. Hearn. MR**975254****[10]**S. I. Gel′fand,*Representations of the full linear group over a finite field*, Mat. Sb. (N.S.)**83 (125)**(1970), 15–41. MR**0272916****[11]**Gene H. Golub and Charles F. Van Loan,*Matrix computations*, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103****[12]**Harish-Chandra,*Eisenstein series over finite fields*, Collected Papers (V. S. Varadarajan, ed.), vol. IV, Springer-Verlag, New York, 1984, pp. 8-20.**[13]**Anna Helversen-Pasotto,*Darstellungen von 𝐺𝐿(3,𝐹_{𝑞}) und Gaußsche Summen*, Math. Ann.**260**(1982), no. 1, 1–21 (German). MR**664361**, https://doi.org/10.1007/BF01475750**[14]**J.-P. Labesse and J. Schwermer,*On liftings and cusp cohomology of arithmetic groups*, Invent. Math.**83**(1986), no. 2, 383–401. MR**818358**, https://doi.org/10.1007/BF01388968**[15]**A. Borel and H. Jacquet,*Automorphic forms and automorphic representations*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR**546598****[16]**Ronnie Lee and Joachim Schwermer,*Cohomology of arithmetic subgroups of 𝑆𝐿₃ at infinity*, J. Reine Angew. Math.**330**(1982), 100–131. MR**641814**, https://doi.org/10.1515/crll.1982.330.100**[17]**Allan J. Silberger,*An elementary construction of the representations of 𝑆𝐿(2,𝐺𝐹(𝑞))*, Osaka J. Math.**6**(1969), 329–338. MR**0291316****[18]**C. Soulé,*The cohomology of*, Topology**17**(1978), 1-22.

Retrieve articles in *Mathematics of Computation*
with MSC:
11F75,
11F70

Retrieve articles in all journals with MSC: 11F75, 11F70

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134711-3

Article copyright:
© Copyright 1992
American Mathematical Society