Primitive polynomials over finite fields
HTML articles powered by AMS MathViewer
- by Tom Hansen and Gary L. Mullen PDF
- Math. Comp. 59 (1992), 639-643 Request permission
Abstract:
In this note we extend the range of previously published tables of primitive polynomials over finite fields. For each ${p^n} < {10^{50}}$ with $p \leq 97$ we provide a primitive polynomial of degree n over ${F_p}$. Moreover, each polynomial has the minimal number of nonzero coefficients among all primitives of degree n over ${F_p}$.References
- J. D. Alanen and Donald E. Knuth, Tables of finite fields, Sankhyā Ser. A 26 (1964), 305–328. MR 186664 C. Batut, D. Bernardi, H. Cohen, and M. Olivier, PARI, Version 1.32, 1989, 1990.
- Jacob T. B. Beard Jr. and Karen I. West, Some primitive polynomials of the third kind, Math. Comp. 28 (1974). MR 366879, DOI 10.1090/S0025-5718-1974-0366879-X
- David M. Bressoud, Factorization and primality testing, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989. MR 1016812, DOI 10.1007/978-1-4612-4544-5
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^{n}\pm 1$, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. $b=2,\,3,\,5,\,6,\,7,\,10,\,11,\,12$ up to high powers. MR 715603
- Stephen D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335–344. MR 244202, DOI 10.1017/s0305004100045023
- Stephen D. Cohen, Primitive elements and polynomials with arbitrary trace, Discrete Math. 83 (1990), no. 1, 1–7. MR 1065680, DOI 10.1016/0012-365X(90)90215-4
- D. H. Green and I. S. Taylor, Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. Inst. Electr. Engrs. 121 (1974), 935–939. MR 434611, DOI 10.1049/piee.1974.0214
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- Helmut Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 43–53. MR 1325510, DOI 10.1007/BF01810846
- Harald Niederreiter, An enumeration formula for certain irreducible polynomials with an application to the construction of irreducible polynomials over the binary field, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 2, 119–124. MR 1325516, DOI 10.1007/BF01810295
- W. Wesley Peterson and E. J. Weldon Jr., Error-correcting codes, 2nd ed., The M.I.T. Press, Cambridge, Mass.-London, 1972. MR 0347444
- Wayne Stahnke, Primitive binary polynomials, Math. Comp. 27 (1973), 977–980. MR 327722, DOI 10.1090/S0025-5718-1973-0327722-7
- Eiji Sugimoto, A short note on new indexing polynomials of finite fields, Inform. and Control 41 (1979), no. 2, 243–246. MR 534543, DOI 10.1016/S0019-9958(79)90591-6
- E. J. Watson, Primitive polynomials $(\textrm {mod}\ 2)$, Math. Comp. 16 (1962), 368–369. MR 148256, DOI 10.1090/S0025-5718-1962-0148256-1 S. Wolfram, Mathematica (sun 3.68881) 1.2, 1988, 1989.
- Neal Zierler and John Brillhart, On primitive trinomials $(\textrm {mod}\ 2)$, Information and Control 13 (1968), 541–554. MR 237468
- Neal Zierler and John Brillhart, On primitive trinomials $(\textrm {mod}\ 2)$. II, Information and Control 14 (1969), 566–569. MR 244204
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 59 (1992), 639-643
- MSC: Primary 11T06
- DOI: https://doi.org/10.1090/S0025-5718-1992-1134730-7
- MathSciNet review: 1134730