Spherical designs, discrepancy and numerical integration
Authors:
Peter J. Grabner and Robert F. Tichy
Journal:
Math. Comp. 60 (1993), 327-336
MSC:
Primary 11K45; Secondary 65C05
DOI:
https://doi.org/10.1090/S0025-5718-1993-1155573-5
MathSciNet review:
1155573
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A spherical design is a point configuration on the sphere, which yields exact equal-weight quadrature formulae for polynomials up to a given degree. Until now only very specific constructions for spherical designs are known. We establish connections to spherical cap discrepancy and show some general discrepancy bounds. Furthermore, we reformulate the problem of constructing designs as an optimization problem and develop an algorithm for finding 'practical designs'.
- [1] József Beck and William W. L. Chen, Irregularities of distribution, Cambridge Tracts in Mathematics, vol. 89, Cambridge University Press, Cambridge, 1987. MR 903025
- [2] Bruno Buchberger, Applications of Gröbner bases in nonlinear computational geometry, Mathematical aspects of scientific software (Minneapolis, Minn., 1986/87) IMA Vol. Math. Appl., vol. 14, Springer, New York, 1988, pp. 59–87. MR 938107, https://doi.org/10.1007/978-1-4684-7074-1_3
- [3] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geometriae Dedicata 6 (1977), no. 3, 363–388. MR 0485471
- [4] H. Fischer, Beiträge zur Computerzahlentheorie: Lineare Rekursionen, Designs und Diophantische Gleichungen, Thesis, Techn. Univ. Vienna, 1992.
- [5] Walter Gautschi, Advances in Chebyshev quadrature, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Springer, Berlin, 1976, pp. 100–121. Lecture Notes in Math., Vol. 506. MR 0468117
- [6] C. D. Godsil, Polynomial spaces, Proceedings of the Oberwolfach Meeting “Kombinatorik” (1986), 1989, pp. 71–88. MR 974814, https://doi.org/10.1016/0012-365X(88)90134-3
- [7] Peter J. Grabner, Erdős-Turán type discrepancy bounds, Monatsh. Math. 111 (1991), no. 2, 127–135. MR 1100852, https://doi.org/10.1007/BF01332351
- [8] Edmund Hlawka, Beiträge zur Theorie der Gleichverteilung und ihren Anwendungen. I. Einleitung, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 197 (1988), no. 1-3, 1–94 (German). MR 1004374
- [9] Loo Keng Hua and Yuan Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981. Translated from the Chinese. MR 617192
- [10] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0419394
- [11] A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on the sphere. I, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S149–S186. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861487, https://doi.org/10.1002/cpa.3160390710
- [12] A. D. McLaren, Optimal numerical integration on a sphere, Math. Comp. 17 (1963), 361–383. MR 0159418, https://doi.org/10.1090/S0025-5718-1963-0159418-2
- [13] Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 0199449
- [14] I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955 (German). MR 0069915
- [15] D. J. Newman and H. S. Shapiro, Jackson’s theorem in higher dimensions, On Approximation Theory (Proceedings of Conference in Oberwolfach, 1963), Birkhäuser, Basel., 1964, pp. 208–219. MR 0182828
- [16] J. J. Seidel, Integration over spheres, Discrete Geometry (A. Florian, ed.), Salzburg, 1985, pp. 233-242.
- [17] P. D. Seymour and Thomas Zaslavsky, Averaging sets: a generalization of mean values and spherical designs, Adv. in Math. 52 (1984), no. 3, 213–240. MR 744857, https://doi.org/10.1016/0001-8708(84)90022-7
- [18] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939.
- [19] Gerold Wagner, On averaging sets, Monatsh. Math. 111 (1991), no. 1, 69–78. MR 1089385, https://doi.org/10.1007/BF01299278
Retrieve articles in Mathematics of Computation with MSC: 11K45, 65C05
Retrieve articles in all journals with MSC: 11K45, 65C05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1993-1155573-5
Article copyright:
© Copyright 1993
American Mathematical Society