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THE MATHEMATICAL WORK OF MORGAN WARD

D. H. LEHMER

The mathematical works of Morgan Ward fall into seven categories as follows:

I Recurring Series (33 papers)

II Diophantine Equations (8 papers)

III Abstract Arithmetic ( 12 papers)

IV Lattice Theory ( 13 papers)
V Functional Equations (5 papers)

VI   Numerical Analysis (4 papers)

VII   Miscellaneous (7 papers)

These seven topics do not represent seven periods of time. Early and late works

are to be found in all categories. This is true especially of recurring series, a

topic in which his sustained interest is most noticeable and one which I feel

better qualified to discuss than any of the others.

The topic of recurring series belongs to the mixed additive-multiplicative the-
ory of numbers. Each term of a recurring series being a fixed linear combination

of its previous k terms is additive in nature. Yet there may be unexpected di-

visibility and multiplicative properties to discover. For k = 1 of course, we

have essentially the successive powers of a given base, a truly multiplicative

situation. But for k = 2 we have the theory of Lucas' functions with their

many elegant multiplicative properties and connections with cyclotomy. As

with other kinds of problems, the going gets much harder when k > 3. It was

one of Morgan Ward's major goals to describe the divisibility properties to be

encountered, especially when k = 3 . At the same time he worked on the prob-
lem of strengthening the results known for k = 2 . Indeed his last paper adds to

our knowledge of classes of primes dividing the ancient series of Fibonacci, see

[80]. Other papers for k = 2 are concerned with the so-called intrinsic divisors

of Un = (an - ß")/(a - ß), where a, ß are the roots of X2 - RX + Q = 0,

namely those primes p which divide Un but not Um for m < n. The theo-

rems are to the effect that every Un has such a prime divisor except in a finite

number of specified choices (R, Q) and then for only specified values of n.

The celebrated Fibonacci number Fx2 = 144 is an exceptional case in point.
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Results like these have practical value in proving theorems on the distribution

of power residues.

Another subject of study that intrigued Ward was the so-called divisibility

sequences of Marshall Hall, namely sequences U„ such that a\b implies that

If a | Uf,. Many second-order recurring series are divisibility sequences as well as

some recurring series of higher order. Ward [60, 62, 65, 66] found other kinds

of divisibility sequences associated with the theory of the real multiplication of

Jacobi elliptic functions.

Of the many results about recurrences of order k = 3 we select one that is

easy to state. Let Wx, W2, W3, ... be nonperiodic and satisfy Wk+X = PWk -

QWk_x+RWk_2, and suppose that X3-PX2 + QX-R = (X-a)(X-b)(X-c),
where a, b and c are coprime integers. Then Wr = 0 for at most 3 values

of r. Since Wn = Aar + Bbr + Ccr, this result is something like Fermat's Last

Theorem.
On Diophantine equations, two problems may be cited.

1. Multiplicative Diophantine systems. The system

X9 = Y5 = U4V4 = WRST

has a parametric solution involving 46127626 parameters, see [18].

2. Euler's Conjecture: ' X4 + Y4 + Z4 = W4 has no nontrivial solution. In

[59] Ward showed that any nontrivial solution must have W > 104 . This was

done by hand calculation in 1945.
Ward's abstract arithmetic papers comprise a variety of notes on subjects

ranging over group theory, logic, and algebraic number theory.

Morgan Ward had unbounded enthusiasm for the work of others that ap-

pealed to his sense of beauty. In many cases he proceeded to dig in these other

fields and to help uncover their treasures. It was thus that he became enthused

about Garrett Birkhoffs lattice theory. Of his many papers on the subject most

were concerned with so-called residuated lattices.

Ward's functional equation papers include two on the problem of continuous

iteration. Let E(x) > x be continuous and steadily increasing. Write Eo(x) =

x, Ex(x) = E(x), E2(x) = E(E(x)), etc. How can you define Ey(x) for

nonintegral y ? Ward found that the most general solution of the problem is

Ey(x) = ip(ip~l(x)+y),

where y/(x) = E[xX(6(x-[x])) and 0 is any continuous function that increases

steadily from 0(0) = 0 to 0(1) = 1, see [36]. Other papers deal with the proper-

ties of the coefficients of power series of functions E(x) for which E2(x) = x ,

with reversion of power series, and with special Appel polynomials.

Numerical analysis papers are mainly notes on the practical calculation of

special functions and integrals. Some of the work he did during World War II

gave him a chance to consider such matters. Actually almost all of his papers

are full of examples of what he is talking about. He was also an exponent of

the experimental approach to research. When his ingenuity was insufficient to

solve all cases of a difficult problem he never was too proud to point this out.

1 Editorial note. Euler's Conjecture was recently shown to be false by Noam Elkies, Math. Comp.

51 (1988), 825-835. The minimal counterexample was found by Roger Frye. and is 958004 +

2175194 + 4I45604 = 422481".
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I have mentioned his excitable and contagious enthusiasm for the fine work

of many other writers. On the other hand, like E. T. Bell, he had great contempt

for those who proliferate easy empty generalizations of the great classic ideas

of mathematics.
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