A fundamental modular identity and some applications
Authors:
Richard Blecksmith, John Brillhart and Irving Gerst
Journal:
Math. Comp. 61 (1993), 83-95
MSC:
Primary 11P83; Secondary 05A19, 11F11
DOI:
https://doi.org/10.1090/S0025-5718-1993-1197509-7
MathSciNet review:
1197509
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove a six-parameter identity whose terms have the form ${x^\alpha }T({k_1},{l_1})T({k_2},{l_2})$, where $T(k,l) = \sum \nolimits _{ - \infty }^\infty {{x^{k{n^2} + l n}}}$. This identity is then used to give a new proof of the familiar Ramanujan identity $H(x)G({x^{11}}) - {x^2}G(x)H({x^{11}}) = 1$, where $G(x) = \prod \nolimits _{n = 0}^\infty {{{[(1 - {x^{5n + 1}})(1 - {x^{5n + 4}})]}^{ - 1}}}$ and $H(x) = \prod \nolimits _{n = 0}^\infty {{{[(1 - {x^{5n + 2}})(1 - {x^{5n + 3}})]}^{ - 1}}}$. Two other identities, called "balanced ${Q^2}$ identities", are also established through its use.
- B. J. Birch, A look back at Ramanujan’s notebooks, Math. Proc. Cambridge Philos. Soc. 78 (1975), 73–79. MR 379372, DOI https://doi.org/10.1017/S0305004100051501
- Richard Blecksmith, John Brillhart, and Irving Gerst, Parity results for certain partition functions and identities similar to theta function identities, Math. Comp. 48 (1987), no. 177, 29–38. MR 866096, DOI https://doi.org/10.1090/S0025-5718-1987-0866096-X
- Richard Blecksmith, John Brillhart, and Irving Gerst, Some infinite product identities, Math. Comp. 51 (1988), no. 183, 301–314. MR 942157, DOI https://doi.org/10.1090/S0025-5718-1988-0942157-2
- Richard Blecksmith, John Brillhart, and Irving Gerst, On a certain (mod $2$) identity and a method of proof by expansion, Math. Comp. 56 (1991), no. 194, 775–794. MR 1068825, DOI https://doi.org/10.1090/S0025-5718-1991-1068825-2 ---, A general formula for balanced ${T^2}$ identities of a simple type, Abstracts Amer. Math. Soc. 13 (1992), 504. D. Bressoud, Proof and generalization of certain identities conjectured by Ramanujan, PhD Thesis, Temple University, Philadelphia, PA, 1977.
- S. Ramanujan, Algebraic relations between certain infinite products [Proc. London Math. Soc. (2) 18 (1920), Records for 13 March 1919], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 231. MR 2280872 S. Robins, Arithmetic properties of modular forms, PhD Thesis, University of California, Los Angeles, CA, 1991. L. J. Rogers, On a type of modular relation, Proc. London Math. Soc. (2) 19 (1921), 387-397. G. N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1933), 57-69.
Retrieve articles in Mathematics of Computation with MSC: 11P83, 05A19, 11F11
Retrieve articles in all journals with MSC: 11P83, 05A19, 11F11
Additional Information
Keywords:
Triple and quintuple product,
modular identity,
balanced <IMG WIDTH="29" HEIGHT="23" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${T^2}$"> and <IMG WIDTH="31" HEIGHT="43" ALIGN="MIDDLE" BORDER="0" SRC="images/img2.gif" ALT="${Q^2}$"> identity
Article copyright:
© Copyright 1993
American Mathematical Society