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Dedicated to the memory ofD. H. Lehmer

Abstract. Early 17th-century mathematical publications of Johann Faulhaber

contain some remarkable theorems, such as the fact that the r-fold summation

of \m , 2m , ... , nm is a polynomial in n(n + r) when m is a positive odd

number. The present paper explores a computation-based approach by which

Faulhaber may well have discovered such results, and solves a 360-year-old

riddle that Faulhaber presented to his readers. It also shows that similar results

hold when we express the sums in terms of central factorial powers instead

of ordinary powers. Faulhaber's coefficients can moreover be generalized to

noninteger exponents, obtaining asymptotic series for Xa + 2" + ■ ■ ■ + na in

powers of n~l(n + 1)_1 .

1. INTRODUCTION

Johann Faulhaber of Ulm (1580-1635), founder of a school for engineers

early in the 17th century, loved numbers. His passion for arithmetic and alge-

bra led him to devote a considerable portion of his life to the computation of

formulas for the sums of powers, significantly extending all previously known

results. Indeed, he may well have carried out more computing than anybody

else in Europe during the first half of the 17th century. His greatest mathe-

matical achievements appear in a booklet entitled Academia Algebrœ (written

in German in spite of its Latin title), published in Augsburg, 1631 [2]. Here

we find, for example, the following formulas for sums of odd powers:

l1+2' +

l3 + 23 +

l5 + 25 +

l7 + 27 +

l9 + 29 +

lu+2n + -

13lli + lli +

115 + 215 +

■ + nx=N,        N=(n2 + n)/l;

■ + n3 = N2;

■ + n5 = (4N3-N2)/3 ;

■ + n1 = (12N4 - 87V3 + 2N2)/6 ;

■ + n9 = (16N5 - 20N4 + 12N3 - 3N2)/5 ;

+ nxx = (327V6 - 647V5 + 687V4 - 407V3 + 107V2)/6 ;

+ nx3 = (9607V7 - 28007V6 + 45927V5 - 47207V4

+ 27647V3-6917V2)/105;

+ K15 = (1927V8 - 7687V7 + 17927V6 - 28167V5

+ 28727V4- 16807V3 + 4207V2 )/12;
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l17 + 217 + • • • + nxl = (12807V9 - 67207V8 + 211207V7 - 468807V6

+ 729127V5 - 742207V4 + 434047V3 - 108517V2)/45 .

Other mathematicians had studied 2Znx, ~Ln2, ... , In1, and he had previously

gotten as far as Em12 ; but the sums had always previously been expressed as

polynomials in n, not TV.
Faulhaber begins his book by simply stating these novel formulas and pro-

ceeding to expand them into the corresponding polynomials in n. Then he

verifies the results when n — 4, TV = 10. But he gives no clues about how he

derived the expressions; he states only that the leading coefficient in Z«2m_1 will

be 2m~x/m , and that the trailing coefficients will have the form 4amN3-amN2

when m > 3 .
Faulhaber believed that similar polynomials in TV, with alternating signs,

would continue to exist for all m, but he may not really have known how

to prove such a theorem. In his day, mathematics was treated like all other

sciences; an observed phenomenon was considered to be true if it was supported

by a large body of evidence. A rigorous proof of Faulhaber's assertion was first

published by Jacobi in 1834 [6]. A. W. F. Edwards showed recently how to
obtain the coefficients by matrix inversion [1], based on another proof given by

L. Tits in 1923 [8]. But none of these proofs use methods that are very close to

those known in 1631.
Faulhaber went on to consider sums of sums. Let us write 17nm for the

/•-fold summation of mth powers from 1 to n ; thus,

Y?nm = nm ;       Y7+xnm = I71m +I72m + ■ ■ ■ + 17nm .

He discovered that Y7n2m can be written as a polynomial in the quantity

Nr = (n2 + rn)/2 ,

times 17n2 . For example, he gave the formulas

lV = (4TV2- l)Z2«2/5 ;

XV = (47V3- l)lV/7 ;

ZV = (67V4- 1)SV/14;

X6«4 = (4TV6 + 1)XV/15 ;

I2«6 = (67V22 - 57V2 + l)I2«2/7 ;

I3«6 = (107V32 - 10TV3 + 1)IV/21 ;

X4«6 = (47V2 - 4TV4 - 1)ZV/14 ;

I2«8 = (16TV23 - 28TV22 + 18TV2 - 3)lV/T5.

He also gave similar formulas for odd exponents, factoring out 17nx instead

of Y7n2 :

I2«5 = (8TV22 - 27V2 - 1)IV/T4 ;

I2«7 = (407V3 - 407V22 + 67V2 + 6)lV/60.

And he claimed that, in general, Y7nm can be expressed as a polynomial in Nr

times either Y7n2 or 17nx , depending on whether m is even or odd.

Faulhaber had probably verified this remarkable theorem in many cases in-

cluding Z11«6, because he exhibited a polynomial in n for I11«6 that would
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have been quite difficult to obtain by repeated summation. His polynomial,
which has the form

6«17 + 561k16 + • ■ ■ + 1021675563656«5 +-96598656000«

2964061900800

turns out to be absolutely correct, according to calculations with a modern com-

puter.  (The denominator is 171/120. One cannot help thinking that nobody

has ever checked these numbers since Faulhaber himself wrote them down, until

today.)

Did he, however, know how to prove his claim, in the sense that 20th century

mathematicians would regard his argument as conclusive? He may in fact have

known how to do so, because there is an extremely simple way to verify the

result using only methods that he would have found natural.

2. Reflective functions

Let us begin by studying an elementary property of functions defined on the

integers. We will say that the function f(x) is r-reflective if

f(x) = f(y)   whenever   x + y + r = 0 ;

and it is anti-r-reflective if

f(x) = -f(y)   whenever   x + y + r = 0.

The values of x, y, r will be assumed to be integers for simplicity. When

r = 0, reflective functions are even, and anti-reflective functions are odd. No-

tice that r-reflective functions are closed under addition and multiplication;

moreover, the product of two anti- r-reflective functions is r-reflective.

Given a function /, we define its backward difference Vf in the usual way:

Vf(x) = f(x) - f(x - 1).

It is now easy to verify a simple basic fact.

Lemma 1. If f is r-reflective, then Vf is anti-(r - \)-reflective. If f is anti-r-

reflective, then Vf is (r- l)-reflective.

Proof. If x + y + (r-l) = 0, then x + (y-l) + r = 0 and (x - 1) + y + r = 0 .

Thus f(x) = ±f(y - 1) and f(x - 1) = ±f(y) when / is r-reflective or
anti-r-reflective.  Q

Faulhaber almost certainly knew this lemma, because [2, folio D.iii recto]

presents a table of «8, V«8, ... , V8«8 in which the reflection phenomenon is

clearly apparent. He states that he has constructed "grosse Tafeln," but that this

example should be "alles gnugsam vor Augen sehen und auf höhere quantiteten

[exponents] continuiren könde."

The converse of Lemma 1 is also true, if we are careful. Let us define I as

an inverse to the V operator:

J(n)     \C-f(0)-f(n+l),    if«<0.

Here C is an unspecified constant, which we will choose later; whatever its

value, we have

V!f(n) = Zf(n)-ïf(n-\) = f(n)

for all n.
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Lemma 2. If f is r-reflective, there is a unique C such that If is anti-(r+ 1)-

reflective. If f is anti-r-reflective, then If is (r + lfreflective for all C.

Proof. If r is odd, If can be anti-(r + l)-reflective only if C is chosen so

that we have X/(-(r + l)/2) =0. If r is even, If can be anti-(r + 1)-

reflective only if If (-r/2) = -If (-r/2 - 1) = -(if (-r/2) - f(-r/2)) ; i.e.,

X/(-r/2) = I/(-r/2).
Once we have found x and y such that x + y + r+i—0 and X/(x) =

-lf(y), it is easy to see that we will also have X/(x - 1 ) = -lf(y + 1), if /

is r-reflective, since X/(x) - X/(x - 1) = f(x) = f(y + 1 ) = lf(y + 1 ) - lf(y).
Suppose, on the other hand, that / is anti-r-reflective. If r is odd, clearly

X/(x) = lf(y) if x = y = -(r + 1)/1. If r is even, then f(-r/l) = 0; so
X/(x) = lf(y) when x = -r/2 and y — -r/2 - 1 . Once we have found x

and y such that -x + y + r+i =0 and X/(x) = lf(y), it is easy to verify as

above that X/(x - 1 ) = lf(y + 1).    Q

Lemma 3. If f is any even function with f(0) — 0, the r-fold repeated sum

17 f is r-reflective for all even r and anti-r-reflective for all odd r, if we choose

the constant C = 0 in each summation. If f is any odd function, the r-fold

repeated sum 17 f is r-reflective for all odd r and anti-r-reflective for all even r,

if we choose the constant C — 0 in each summation.

Proof. Note that f(0) = 0 if y is odd. If /(0) = 0 and if we always choose
C = 0, it is easy to verify by induction on r that Y7f(x) = 0 for -r<x<0.

Therefore the choice C = 0 always agrees with the unique choice stipulated

in the proof of Lemma 2, whenever a specific value of C is necessary in that
lemma.    □

When m is a positive integer, the function f(x) = xm obviously satisfies the

condition of Lemma 3. Therefore we have proved that each function X'nm is

either r-reflective or anti-r-reflective, for all r > 0 and m > 0. And Faulhaber

presumably knew this too. His theorem can now be proved if we supply one

small additional fact, specializing from arbitrary functions to polynomials:

Lemma 4. A polynomial f(x) is r-reflective if and only if it can be written as a

polynomial in x(x + r) ; it is anti-r-reflective if and only if it can be written as

(x + r/2) times a polynomial in x(x + r).

Proof. The second statement follows from the first, because we have already

observed that an anti-r-reflective function must have /(-r/2) = 0 and because

the function x+r/2 is obviously anti-r-reflective. Furthermore, any polynomial

in x(x + r) is r-reflective, because x(x + r) = y(y + r) when x + y + r = 0.

Conversely, if f(x) is r-reflective, we have f(x - r/2) = f(-x - r/2), so

g(x) = f(x - r/2) is an even function of x ; hence g(x) = h(x2) for some

polynomial h . Then f(x) - g(x + r/2) - h(x(x + r) + r2/4) is a polynomial

in x(x + r).    Q

Theorem (Faulhaber). There exist polynomials gfym for all positive integers r
and m such that

Y7n2m-X = gr,2m+x (n(n + r))Y7nx ,        I7n2m = gr,2m{n(n + r))Y7n2.

Proof. Lemma 3 tells us that 17nm is r-reflective if m + r is even and anti-r-

reflective if m + r is odd.
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Note that lrnx = ("+[). Therefore a polynomial in « is a multiple of lrnx

if and only if it vanishes at -r, ... ,-1,0. We have shown in the proof of

Lemma 3 that lrnm has this property for all m; therefore lrnm/lrnx is an

r-reflective polynomial when m is odd, an anti-r-reflective polynomial when

m is even. In the former case, we are done, by Lemma 4. In the latter case,

Lemma 4 establishes the existence of a polynomial g such that lrnm/lrnx -

(n + r/2)g(n(n + r)). Again, we are done, because the identity

vr 2     2n + r       x
l'n-— X n'

r + 2

is readily verified,    fj

3.  A PLAUSIBLE DERIVATION

Faulhaber probably did not think about r-reflective and anti-r-reflective func-

tions in exactly the way we have described them, but his book [2] certainly indi-

cates that he was quite familiar with the territory encompassed by that theory.

In fact, he could have found his formulas for power sums without knowing

the theory in detail. A simple approach, illustrated here for X«13, would suffice:

Suppose

14X«13 = «7(« + l)1 -S(n) ,

where S(n) is a 1-reflective function to be determined. Then

14«13 = n\n + I)1 - (n - I)1 n1 - VS(n)

= 14nx3 + 70«11 + 42«9 + 2«7 - VS(n) ,

and we have
S(«) = 70X«n+42«9 + 2X«7.

In other words,

lnX3 = ^N1-51nxx-31n9-l-ln1,

and we can complete the calculation by subtracting multiples of previously com-
puted results.

The great advantage of using polynomials in TV rather than n is that the

new formulas are considerably shorter. The method Faulhaber and others had

used before making this discovery was most likely equivalent to the laborious

calculation

X«13 = i«14 + x-¿lnx2 - 26X«11 + x-flnx0 - 143X«9 + *-f X«8 + ^In1

490 143 13 1
+ ^Zn6 - 143Xn5 + -f-'Zn* - 261n3 + -j-ln2 -lnx + ^-n;

the coefficients here are -¡L(\2), -y$(},), • • • , y?('04).
To handle sums of even exponents, Faulhaber knew that

ln2m =    n+2    (ayN + aiN2 + ... + amNm)
Lm + 1

holds if and only if

Z„2m+1 = ^2 + "2 Nl _^Nm+l _

2 3 m +1
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Therefore, he could get two sums for the price of one [2, folios Civ verso and

D.i recto]. It is not difficult to prove this relation by establishing an isomor-

phism between the calculations of ln2m+x and the calculations of the quantities

Sim — ((2m + l)ln2m)/ (n + ¿) ; for example, the recurrence for X«13 above

corresponds to the formula

5,2 = 647V6 - 55,o - 358 - ^56 ,

which can be derived in essentially the same way. Since the recurrences are

essentially identical, we obtain a correct formula for ln2m+x from the formula

for S2m if we replace Nk everywhere by Nk+x/(k+ 1).

4. Faulhaber's CRYPTOMATH

Mathematicians of Faulhaber's day tended to conceal their methods and hide

results in secret code. Faulhaber ends his book [2] with a curious exercise of this

kind, evidently intended to prove to posterity that he had in fact computed the

formulas for sums of powers as far as X«25 although he published the results

only up to X«17.

His puzzle can be translated into modern notation as follows. Let

ZV = "
9 8     axln" H-+ a2nL + axn

d

where the a's are integers having no common factor and d = an~\-\-a2 + ax .

Let
y 25 _ A26n26 + --- + A2n2 + Axn
Ln    - D

be the analogous formula for In25. Let

z„22 = (*.of°-Mi9+ •" + *») ln21
bxo-b9 + --- + b0

Z„23 = (Cl0ft'0-C97V9 + --- + CO)In3

C\o - Cg + ■ • ■ + Cq

*» - ('■■""-y*-"-«.»^,
«11-010 +-do

Z«25 = (enW"-g,o/V10 + --go)£H3

eu -ei0 +-e0

where the integers bk , ck , dk , ek are as small as possible so that bk , ck , dk , ek

are multiples of 2k . (He wants them to be multiples of 2k so that bkNk , ckNk ,

dkNk , ekNk are polynomials in n with integer coefficients; that is why he

wrote, for example, X«7 = (127V2-87V+2)7V2/6 instead of (67V2-47V+l)7V2/3 .
See [2, folio D.i verso].) Then compute

x, = (c3-«l2)/7924252 ;

x2 = (b5 + ax o)/112499648;

X3 = (aM -è9-c,)/2945002 ;

x4 = («i4+ c7)/120964;

x5 = (A2ba\, - D + fl13 + dx, + ex, )/199444.
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These values (xx, x2, X3, x4, x5) specify the five letters of a what he called a

"hochgerühmte Nam," if we use five designated alphabets [2, folio F.i recto].

It is doubtful whether anybody solved this puzzle during the first 360 years

after its publication, but the task is relatively easy with modern computers. We

have

«,0 = 532797408,     «n = 104421616,    «12= 14869764,

«,3=1526532,    au=H0160;

¿5 = 29700832,     b9 = 140800;

c, =205083120,    c3 = 344752128,     c1 = 9236480 ;

dxx = 559104;    exx = 86016;    ^26 = 42;    Z) = 1092.

The fact that x2 = (29700832 + 532797408)/l 12499648 = 5 is an integer is
reassuring: We must be on the right track! But alas, the other values are not

integral.

A bit of experimentation soon reveals that we do obtain good results if we

divide all the ck by 4. Then, for example,

x, = (344752128/4 - 14869764)/7924252 = 9,

and we also find x3 = 18, x4 = 20. It appears that Faulhaber calculated

X9«8 and X«22 correctly, and that he also had a correct expression for X«23

as a polynomial in N ; but he probably never went on to express X«23 as a

polynomial in n , because he would then have multiplied his coefficients by 4

in order to compute c^N6 with integer coefficients.

The values of (xx, x2, X3, X4) correspond to the letters I E S U, so the

concealed name in Faulhaber's riddle is undoubtedly I E S U S (Jesus).

But his formula for x5 does not check out at all; it is way out of range and

not an integer. This is the only formula that relates to X«24 and X«25, and it

involves only the simplest elements of those sums—the leading coefficients A2¿,

D, dx 1 , ex ! . Therefore, we have no evidence that Faulhaber's calculations

beyond X«23 were reliable. It is tempting to imagine that he meant to say

' ^26«T 1 ¡D ' instead of ' A2(lax, - D ' in his formula for x5, but even then major

corrections are needed to the other terms and it is unclear what he intended.

5. All-integer formulas

Faulhaber's theorem allows us to express the power sum lnm in terms of

about \m coefficients. The elementary theory above also suggests another ap-

proach that produces a similar effect: We can write, for example,

« = (?);

«3 = 6CÎ1) + (Î) ;

«5= 120("+2) + 30("+') + (")-

(It is easy to see that any odd function g(n) of the integer n can be expressed

uniquely as a linear combination

g(n).= al(i)+ai("+3l)+a5r52) + ---

of the odd functions ("), ("3'), ("j2), ... , because we can determine the

coefficients ax, «3, «5, ...   successively by plugging in the values n = 1,2,
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3, ... . The coefficients ak will be integers if and only if g(n) is an integer for

all n .) Once g(n) has been expressed in this way, we clearly have

lg(n) = axr2x) + a3Cf)+asC+63) + --- .

This approach, therefore, yields the following identities for sums of odd

powers:

v   1       in+l
2"  '{   2

Z«3 = 6("!2U/

Z^120(-3)+30(-2) + (-1

Z«7 = 5040(-4) + 1680(-3) + 126(-2) + (-1

Z«9 = 362880 ("1+05) + 151200 (";4) + lV64o(";3)

c.nfn + l\     in + l
+ 51°(   4   j + (   2

Zrc11 = 39916800(" + 0) + 19958400(Yo5) + 3160080T" ̂ 4)

+ 16S960(»;3)+2046(" ;2) + (»J'

X«13 = 6227020800 i"*7) + 3632428800 (" ^6) + 726485760 f"^5)

+ 57657600(";4) + 1561560(A2;3)+8190(";2) + (" + 1

And repeated sums are equally easy; we have

-r  i _ (n + r\ Tr 3     sfn+1+r\  .  (n + r
E'"-(1+r)'        r"'6(   3 + r   J + UJ'     e,C'

The coefficients in these formulas are related to what Riordan [7, p. 213] has

called central factorial numbers of the second kind. In his notation

m

xm = Y, T(m, k)xW ,    xw=x(x + §- l)(x + §-2) •■• (x-f + l) ,
k=\

when m > 0, and T(m, k) = 0 when m - k is odd; hence

n^-i=¿(2A:-l)!r(2m>2A:)('I + fc_-1))

k=l V '

Z«2-1 = J] (2k - 1)! T(2m , Ik) (^ * J .

The coefficients   T(2m, 2k)   are always integers, because the basic identity

x[k+i] — x[k]ix2 _ k2/4) implies the recurrence

T(2m + 2,2k) = k2T(2m , 2k) + T(2m ,2k-2).
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The generating function for these numbers turns out to be

OO       /   m v

cosh(2x s\nn(y/2)) = ^ Í ̂  T(2m, 2k)x2k )
,  (2m)!

m=0 xk=0 '   v       '

Notice that the power-sum formulas obtained in this way are more "efficient'

than the well-known formulas based on Stirling numbers (see [5, (6.12)]):

"-e«{:}(;:!)-ç«{î}(-^(;:î
The latter formulas give, for example,

In1 = 5040C+1) + 15120("+') + 16800("+') + 8400("+') + 1806C1;1)

+ 126(»+1) + C+1)
= 5040('!+7) - 15120("+6) + 16800("+5) - 8400("+4) + 1806('!+3)

-126(f)+ (-').
There are about twice as many terms, and the coefficients are larger.   (The

Faulhaberian expression Zrc7 = (67V4 - 47V3 + TV2)/3 is, of course, better yet.)

Similar formulas for even powers can be obtained as follows. We have

n2 = n(1) =Ux(n),

n4 = 6n("+') + n(1) = 12U2(n) + Ux(n),

n6 = 120«("+2) + 30n("+') +«(?) = 360U3(n) + 60U2(n) + Ux(n),

etc., where

TT . ,     n (n + k - 1\     (n + k\     (n + k-1

^n) = k\2k-l  ) = \2k) + \     2k

Hence

ln2 = Tx(n),

Z«4 = l2T2(n) + Tx(n) ,

In6 = 360r3(«) + 60r2 + Tx(n) ,

Z«8 = 20160r4(«) + 5040r3(«) + 252T2(n) + Tx(n) ,

Z«10 = 1814400r5(«) + 604800r4(«) + 52920r3(«) + 1020r2(«) + Tx(n)

Z«12 = 239500800r6(«) + 99792000r5(«) + 12640320r4(«)

+ 506880r3(«) + 4092r2(«) + Tx (n) ,

etc., where

_, ,     fn + k+\\     (n + k\     2n+\ (n + k
Tk(n)=      ,.   , ,      +

. 2k + 1  J     \2k+ 1)     2k+\\ 2k

Curiously, we have found a relation here between Z«2m and lnlm~x , some-

what analogous to Faulhaber's relation between ln2m and Z«2m+I : The for-

mula
ln2m fn+\\ (n + 2\ (n + m7

2n+i=a\   2   ra2\   4    r   - + am\ 2m
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holds if and only if

v 2m-í     3    ín + l\     5    ín + 2\ 2m+l      (n + m\
ln        =íai{   2   ) + 2a2{   4   )+- + ^n-a"'{ 2m  j"

6. Reflective decomposition

The forms of the expressions in the previous section lead naturally to useful

representations of arbitrary functions f(n) defined on the integers. It is easy

to see that any f(n) can be written uniquely in the form

ft  ^     \-     (n + \k/2\\

*:>0        V '

for some coefficients ak ; indeed, we have

ak = Vkf(\k/2\).

(Thus «o = /(0), «i =/(0)-/(-l), a2 = f(l)- 2/(0) + /(-l), etc.) The
ak are integers if and only if f(n) is always an integer. The ak are eventually

zero if and only if / is a polynomial. The a2k are all zero if and only if / is

odd. The a2k+x are all zero if and only if / is 1-reflective.

Similarly, there is a unique expansion

f(n) = b0T0(n) + bx Ux(n) + b2Tx (n) + b3U2(n) + b4T2(n) + ■■■ ,

in which the bk are integers if and only if f(n) is always an integer. The b2k

are all zero if and only if / is even and f(0) = 0. The b2k+x are all zero if

and only if / is anti-1 -reflective. Using the recurrence relations

VTk(n) = Uk(n) ,        VUk(n) = Tk_x(n - 1) ,

we find
ak = Vkf(lk/2\) = 2bk_l + (-l)kbk

and therefore

bk = Yl(-l)Um+W2i2k-Jaj.
7=0

In particular, when f(n) = 1 for all n , we have bk — (-1)^/^2^ . The infinite

series is finite for each n .

Theorem. If f is any function defined on the integers and if r, s are arbitrary

integers, we can always express f in the form

f(n) = g(n) + h(n)

where g(n) is r-reflective and h(n) is anti-s-reflective. This representation is

unique, except when r is even and s is odd; in the latter case the representation

is unique if we specify the value of g or h at any point.

Proof. It suffices to consider 0 < r, s < 1 , because f(x) is (anti)-r-reflective

if and only if f(x + a) is (anti)-(r + 2«)-reflective.

When r = s — 0, the result is just the well-known decomposition of a func-

tion into even and odd parts,

g(n) = \(f(n) + /(-«)) ,        h(n) = \(f(n) - f(-n)).
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When r = s = 1, we have similarly

g(n) = i(f(n) + f(-l- n)) ,       h(n) = \(f(n) - f(-1 - n)).

When r = 1 and s = 0, it is easy to deduce that h(0) = 0, g(0) = f(0),

h(l) = f(0)-f(-l), g(l) = f(l)-f(0)+f(-l), h(2)=f(l)-f(0)+f(-l)-
f(-2), g(i) = f (2) - f (i)+ f(0)-f(-l) + f(-l), etc.

And when r = 0 and s = 1, the general solution is g(0) = f(0) - C,

h(0) = C, g(l) = f(-\) + C, h(l) = f(l)-f(-l)-C, g(l) = f(l)-
f(-l) + f(-l)-C, h(l) = f (1) - f (1) + f (-l)-f (-2)+ C, etc.    D

When f(n) = Ylk>0ak(n+^-k/2i), the case r = 1 and s - 0 corresponds to

the decomposition

g(n) = Ea2k(n2kk) •        h^ = Y,«2k+l Qk++\) -
k=0        v ' fc=0 x '

Similarly, the representation f(n) = ¿Zk>0b2kTk(n) + T,k>ob2k+iUk+l(n) cor-

responds to the case r = 0, 5=1, C = f(0).

1. Back to Faulhaber's form

Let us now return to representations of lnm as polynomials in n(n + 1).

Setting u = 27V = n2 + n , we have

Z« = jU

In3 = \u2

ln% = \(u3 - \u2)

In1 = \(u* -\u3 + \u2)

and so on, for certain coefficients Akm>.

Faulhaber never discovered the Bernoulli numbers; i.e., he never realized

that a single sequence of constants Bq, Bx, B2, ... would provide a uniform

formula

S"m = ^TT(ßo«m+1 - (mtl)Bxnm + (m¡x)B2nm-x -■■■ + (-l)m(m^x)Bmn)

for all sums of powers. He never mentioned, for example, the fact that almost

half of the coefficients turned out to be zero after he had converted his formulas

for lnm from polynomials in TV to polynomials in n . (He did notice that the

coefficient of n was zero when m > 1 was odd.)

However, we know now that Bernoulli numbers exist, and we know that Bj, =

Bi = By = ■ ■ ■ = 0. This is a strong condition. Indeed, it completely defines the

constants Akm) in the Faulhaber polynomials above, given that AQm) = 1 .

For example, let us consider the case m = 4, i.e., the formula for In1 : We

need to find coefficients a = a[^ , b — A{2 ', c = A¡' such that the polynomial

2~Aq   U ,

\(A{2)u2 + A^u),

^6(A03)u3 + A[3)u2 + A^u),

±(4V + 4V-r44)H2-r44)H),

n4(n+ l)4 + an3(n + l)3 + bn2(n + \)2 + cn(n+ 1)
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has vanishing coefficients of n5, n3 , and n . The polynomial is

ns + 4«7 + 6n6 + 4«5   + n4

+an6+3an5 + 3an4+an3

+ bn4 + 2bn3 + n2

+ en2 + en ;

so we must have 3a + 4-2b + a = c = 0. In general the coefficient of, say,

n2m-5 m me polynomial for 2mln2m~x is easily seen to be

(^X)+(m3-i)^(,'") + rr2)4m)-

Thus, the Faulhaber coefficients can be defined by the rules

(«)        *>-■;    X(2,:^2j>r = o.  *>"•
7=0 v '

(The upper parameter will often be called w instead of m, in the sequel,

because we will want to generalize to noninteger values.) Notice that ( * ) defines

the coefficients for each exponent without reference to other exponents; for

every integer k > 0, the quantity Ak is a certain rational function of w . For

example, we have

w(w - 2)/6 ,

w(w- 1)(iü-3)(7iü-8)/360,

w(w -l)(w- 2)(w - 4)(31u;2 - S9w + 48)/15120,

w(w - \)(w - 2)(w - 3)(w - 5)

■ (I27w3 - 69lw2 + 103Sw - 384)/6048000,

and in general Akw) is w- = w(w - 1) • • • (w — k + 1) times a polynomial of

degree k, with leading coefficient equal to (2 - 22k)B2k/(2k)\ ; if k > 0, that

polynomial vanishes when w = k + 1 .

Jacobi mentioned these coefficients Akm) in his paper [6], and tabulated them

for m < 6, although he did not consider the recurrence ( * ). He observed that

the derivative of lnm with respect to « is m ln'n~x +Bm ; this follows because

power sums can be expressed in terms of Bernoulli polynomials,

lnm = ^(Bm+X(n + \) - Bm+l(0)) ,

and because B'm(x) = mBm_x(x). Thus Jacobi obtained a new proof of Faul-

haber's formulas for even exponents:

In2

In4

In6

etc. (The constant terms are zero, but they are shown explicitly here so that the

-a™

A2W)

-4W)

4W)

I(^o2,«+^(,2))(2«+l),

\(lA^u2 + lA^u+xzA^)(2n+\),

\(¡A^u3 + ¡A\%2 + ¡A[% + {A^)(2n + l),
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pattern is plain.) Differentiating again gives, e.g.,

X«5 = £-^-£ ((4 • 34V + 3 • 2A\4)u + 2-1 Af)(2n + l)2

+ 2(4A(4)u3 + 3A{4)u2 + 2A24)u + 1A(4))) - ¿ß6

—— (8 • 7 A(4)u3 + (6-5 A\4) + 4-3 Ai4))u2
6-7

+ (4 • 344) + 3 • 2 A[4))u + (2 . 1 44) + 2 • 1 ̂ <4))) - ¿fi6.

This yields Jacobi's recurrence

(**) (2w-2k)(2w-2k-l)A[w)+(w-k+\)(w-k)Akw\ =2w(2w-1)a[w~{) ,

which is valid for all integers w > k + 1, so it must be valid for all w . Our

derivation of ( ** ) also allows us to conclude that

4&=(2™W-2.        m>2,

by considering the constant term of the second derivative of ln2m~x .

Recurrence ( * ) does not define A^ , except as the limit of A^ when

w —* m. But we can compute this value by setting w — m + 1 and k — m

in ( ** ), which reduces to

2A^ll) = (2m + 2)(2m+l)Amn]

because Al£+l) = 0. Thus,

A{m] = B2m ,    integer m > 0 .

8. Solution to the recurrence

An explicit formula for Akm) can be found as follows: We have

^2m-l = ^(B2m(n + l)-B2m) = ^(AQ^u'" + ... + A^llu),

and n+1 = (y/1 + 4w+l)/2 ; hence, using the known values of A^   > we obtain

X4"»"™-' - *. (j¿™í) . *. (l^ç±*j,

a closed form in terms of Bernoulli polynomials.   ( We have used the fact that

Aíii = Am¡2 = ■ ■ ■ = °. together with the identity B„(x + I) = (-l)"B„(-x).)
Expanding the right side in powers of u gives

x(2r)(^4^)'B-<

using equation (5.70) of [5]. Setting j + I = m - k finally yields

4", = (-.r-'x(J:J(*-;+;)^;w 0£i.<m.
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This formula, which was first obtained by Gessel and Viennot [4], makes it easy

(22)B2m-2, and to derive additionalto confirm that A{™]_x

values such as

0 and A
(m)

m-2

Àm)
*m-3

A(m)   _

(2m
\  22

2m

4

B2m-2
-lA(m)
LAm-2

B2m-i + 5enB2m-2 ,

m > 3 ;

m > 4.

The author's interest in Faulhaber polynomials was inspired by the work of

Edwards [1], who resurrected Faulhaber's work after it had been long forgotten

and undervalued by historians of mathematics. Ira Gessel responded to the

same stimulus by submitting problem E3204 to the Math Monthly [3] regarding

a bivariate generating function for Faulhaber's coefficients. Such a function is

obtainable from the univariate generating function above, using the standard

generating function for Bernoulli polynomials: Since

2m -is>m-s^j>J2B2m
X+ 1

(2m)!

x+ 1

we have

k ,m

{m)um-k

2

2    /m!  ' 2^"m\    2

ze(x+i)z/2     ze-(x+x)z/2 ^ Zcosh(xz/2)

2(ez- 1) " 2(e-z-l) =    2sinh(z/2)

x/1 +4u+ 1

■z)>

ml

,2m

(2m)
= 5>* ,2m

(2m)!

k ,m

Am)

{m)uk
72m

(2m)!

z cosh(^/l + 4uz/2)

2 sinh(z/2)      " '

z ̂ [u~ cosh ( ,Ju + 4 z/2)

2sinh(zv/w ¡2)

The numbers Ak ' are obtainable by inverting a lower triangular matrix, as

Edwards showed; indeed, recurrence ( * ) defines such a matrix. Gessel and

Viennot [4] observed that we can therefore express them in terms of a k x k

determinant,

AP =
1

(1 - w) ... (k - w)

(«»-*+1)
w-k+l

3
iw-k+2

)        (

(w-k+\\

w-k+2\

(w-l\
\2k-\)

b/t + l)

(2k--\)

o
tw-k+2\

lw-\\
\2k-5)

\2k-i)

0

0

(V)
(3)

When w and k are positive integers, Gessel and Viennot proved that this

determinant is the number of sequences of positive integers «ia2«3 • • • aik such

that

«3;_2 < «3J-1 <a3j <w - k + j   for 1 < j < k ,

a3j-2 < «3J+i,     «3;-! < ay+i   for 1 < j < k.
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In other words, it is the number of ways to put positive integers into a k-rov/ed

triple staircase such as

with all rows and all columns strictly increasing from left to right and from top

to bottom, and with all entries in row ;' at most w - k + j. This provides

a surprising combinatorial interpretation of the Bernoulli number B2m when

w = m + 1 and k = m - 1 (in which case the top row of the staircase is forced
to contain 1,2,3).

The combinatorial interpretation proves in particular that (- l)kA[m) > 0 for

all k > 0. Faulhaber stated this, but he may not have known how to prove it.

Denoting the determinant by D(w , k), Jacobi's recurrence ( ** ) implies that
we have

(w - k)2(w - k + i)(w - k - l)D(w,k- 1)

= (2w - 2k)(2w -2k- l)(w -k- l)D(w , k)

- 2w(2w -l)(w- l)D(w -l,k);

this can also be written in a slightly tidier form, using a special case of the

"integer basis" polynomials discussed above:

D(w,k- 1) = Tx(w-k- l)D(w, k) - Tx(w - l)D(w - 1, k).

It does not appear obvious that the determinant satisfies such a recurrence, nor

that the solution to the recurrence should have integer values when w and k

are integers. But, identities are not always obvious.

9. Generalization to noninteger powers

Recurrence ( * ) does not require w to be a positive integer, and we can in

fact solve it in closed form when w - 3/2 :

^A^u^^^bJ^^-)
k>0 V /

-*

A:>0

Therefore, Ak      = (lk2)4~k is related to the kth Catalan number. A similar

closed form exists for Ak    '    when m is any nonnegative integer.

For other cases of w , our generating function for Ak involves Bn(x) with

noninteger subscripts. The Bernoulli polynomials can be generalized to a family

of functions Bz(x), for arbitrary z, in several ways; the best generalization for

our present purposes seems to arise when we define

ßz(x) = xzWf)x^ß;
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choosing a suitable branch of the function xz .   With this definition we can

develop the right-hand side of

5>w«-*«**(:£±^±I
A:>0

( *** )

as a power series in w  ' as u —► oo .

The factor outside the $2 sign lS rather nice; we have

(/-        \ 2w
yi+4u+l\      _v    _w_   (w+j/2\     ,/2

because the generalized binomial series Bx¡2(u~xl2) [5, equation (5.58)] is the

solution to
f(u)xl2-f(u)-xl2 = u-x'2 ,        /(oo) = l,

namely

/(„). (yTT^+i

Similarly we find

u-k/2-j/2 _

So we can indeed expand the right-hand side as a power series with coefficients

that are polynomials in w . It is actually a power series in u~xl2, not u~x ;

but since the coefficients of odd powers of u"xl2 vanish when w is a positive

integer, they must be identically zero. Sure enough, a check with computer

algebra on formal power series yields 1+a\w)u~x + A2w)u~2 + A^' u~3 + 0(u~4),

where the values of Ak    for k < 3 agree perfectly with those obtained directly

from ( * ). Therefore this approach allows us to express Ak as a polynomial

in w , using ordinary Bernoulli number coefficients:

2k

Ak    -l.w+l/2{      l      jx

The power series ( *** ) we have used in this successful derivation is actually

divergent for all u unless 2w is a nonnegative integer, because Bk grows

superexponentially while the factor

/2w\_/   „kfk-2w-\\_ (-l)kY(k-2w) (-\)k   ,,_,„,_,
k j     v   1;  V       *        )     Y(k+\)Y(-2w)      Y(-2w)'
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does not decrease very rapidly as k -> oo. Still, ( *** ) is easily seen to be

a valid asymptotic series as u —> oo, because asymptotic series multiply like

formal power series. This means that, for any positive integer p , we have

/y/T+4Ü+l\2l'kD *       ,w)t¡w_k
Bk = ¿2A{kw)uw-k + 0(u w—p-l'

k=0   v       '    \ / k=0

We can now apply these results to obtain sums of noninteger powers, as

asymptotic series of Faulhaber's type. Suppose, for example, that we are inter-

ested in the sum

n"    - L. £i/3 •
k=\

Euler's summation formula [5, Exercise 9.27] tells us that

/íS"1)-C(J)~i"2'3 + K"í-A''"4"---

=l(x(2(>2/j-^+»-'")
x*:>0

where the parenthesized quantity is what we have called B2/3(n + 1). And when

u = n2 + n , we have B2p(n + 1) = B2/i((^/l +4u+ l)/2) ; hence,

/41/3)-i(3:)~f£41/3)"1/3-*

k>0

= 1 Ml/3 +   5  ,.-2/3 _ JJ_ „-5/3   ....2 u       "I- 36 « 12i5 « -t-

as n —» cxD.   (We cannot claim that this series converges twice as fast as the

classical series in n~x, because both series diverge! But we would get twice as

much precision in a fixed number of terms, by comparison with the classical

series, except for the fact that half of the Bernoulli numbers are zero.)

In general, the same argument establishes the asymptotic series

J2ka-c(-a) ~ —!— j24a+l)/2)u^+x^2-k,
k=\ k>0

whenever a -/ — 1 . The series on the right is finite when a is a positive

odd integer; it is convergent (for sufficiently large n ) if and only if a is a
nonnegative integer.

The special case a = -2 has historic interest, so it deserves a special look:

¿¿~T-^o-1/2)»-1/2-4-1/2)«-3/2--
k2      6

k=X

n2       _,/2      5    _3/2      161 c/2      401    _in
-u   'H-u J/-u 5/2 H-u  'i1
6 24 1920 7168

32021    _9/2
491520

These coefficients do not seem to have a simple closed form; the prime factor-

ization 32021 = 11 • 41 • 71 is no doubt just a quirky coincidence.
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